Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Artificial Q-Grader: Machine Learning-Enabled Intelligent Olfactory and Gustatory Sensing System.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- معلومة اضافية
- المصدر:
Publisher: WILEY-VCH Country of Publication: Germany NLM ID: 101664569 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2198-3844 (Electronic) Linking ISSN: 21983844 NLM ISO Abbreviation: Adv Sci (Weinh) Subsets: MEDLINE
- بيانات النشر:
Original Publication: Weinheim : WILEY-VCH, [2014]-
- الموضوع:
- نبذة مختصرة :
Portable and personalized artificial intelligence (AI)-driven sensors mimicking human olfactory and gustatory systems have immense potential for the large-scale deployment and autonomous monitoring systems of Internet of Things (IoT) devices. In this study, an artificial Q-grader comprising surface-engineered zinc oxide (ZnO) thin films is developed as the artificial nose, tongue, and AI-based statistical data analysis as the artificial brain for identifying both aroma and flavor chemicals in coffee beans. A poly(vinylidene fluoride-co-hexafluoropropylene)/ZnO thin film transistor (TFT)-based liquid sensor is the artificial tongue, and an Au, Ag, or Pd nanoparticles/ZnO nanohybrid gas sensor is the artificial nose. In order to classify the flavor of coffee beans (acetic acid (sourness), ethyl butyrate and 2-furanmethanol (sweetness), caffeine (bitterness)) and the origin of coffee beans (Papua New Guinea, Brazil, Ethiopia, and Colombia-decaffeine), rational combination of TFT transfer and dynamic response curves capture the liquids and gases-dependent electrical transport behavior and principal component analysis (PCA)-assisted machine learning (ML) is implemented. A PCA-assisted ML model distinguished the four target flavors with >92% prediction accuracy. ML-based regression model predicts the flavor chemical concentrations with >99% accuracy. Also, the classification model successfully distinguished four different types of coffee-bean with 100% accuracy.
(© 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH.)
- References:
ACS Appl Mater Interfaces. 2017 Sep 27;9(38):32876-32886. (PMID: 28882036)
ACS Sens. 2019 Feb 22;4(2):268-280. (PMID: 30623644)
Nat Biotechnol. 2019 Apr;37(4):389-406. (PMID: 30804534)
Polymers (Basel). 2017 Dec 14;9(12):. (PMID: 30966013)
Adv Sci (Weinh). 2024 Jun;11(23):e2308976. (PMID: 38582529)
Food Chem. 2017 Sep 1;230:108-116. (PMID: 28407890)
ACS Sens. 2017 Nov 22;2(11):1553-1566. (PMID: 29025261)
ACS Sens. 2017 Nov 22;2(11):1653-1661. (PMID: 29087190)
Nanoscale. 2023 Jan 5;15(2):405-433. (PMID: 36519286)
Sensors (Basel). 2010;10(1):36-46. (PMID: 22315525)
RSC Adv. 2023 Aug 1;13(33):23147-23157. (PMID: 37533784)
Adv Sci (Weinh). 2022 Jun;9(18):e2106017. (PMID: 35426489)
Biosens Bioelectron. 2018 Dec 30;122:58-67. (PMID: 30240967)
ACS Appl Mater Interfaces. 2014 Dec 24;6(24):22051-60. (PMID: 25422873)
Nanoscale. 2019 Dec 21;11(47):22664-22684. (PMID: 31755888)
Digit Chem Eng. 2022 Jun;3:. (PMID: 36874955)
J Am Chem Soc. 2016 Oct 12;138(40):13431-13437. (PMID: 27643402)
J Sci Food Agric. 2015 Aug 30;95(11):2192-200. (PMID: 25258213)
Food Chem. 2021 Apr 16;342:128228. (PMID: 33046282)
Sensors (Basel). 2010;10(3):2088-106. (PMID: 22294916)
ACS Appl Mater Interfaces. 2019 Jul 10;11(27):24172-24183. (PMID: 31246406)
- Grant Information:
National Research Foundation of Korea; 2021M3D1A2046733 Ministry of Science and ICT; 2021M3H4A3A02099208 Ministry of Science and ICT
- Contributed Indexing:
Keywords: gas sensor; liquid sensor; machine learning; surface engineering; zinc oxide
- الرقم المعرف:
0 (Coffee)
SOI2LOH54Z (Zinc Oxide)
- الموضوع:
Date Created: 20240406 Date Completed: 20240619 Latest Revision: 20240621
- الموضوع:
20250114
- الرقم المعرف:
PMC11186046
- الرقم المعرف:
10.1002/advs.202308976
- الرقم المعرف:
38582529
No Comments.