Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

RNA polymerase SI3 domain modulates global transcriptional pausing and pause-site fluctuations.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Bao Y;Bao Y; Cao X; Cao X; Landick R; Landick R; Landick R
  • المصدر:
    Nucleic acids research [Nucleic Acids Res] 2024 May 08; Vol. 52 (8), pp. 4556-4574.
  • نوع النشر :
    Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
  • اللغة:
    English
  • معلومة اضافية
    • المصدر:
      Publisher: Oxford University Press Country of Publication: England NLM ID: 0411011 Publication Model: Print Cited Medium: Internet ISSN: 1362-4962 (Electronic) Linking ISSN: 03051048 NLM ISO Abbreviation: Nucleic Acids Res Subsets: MEDLINE
    • بيانات النشر:
      Publication: 1992- : Oxford : Oxford University Press
      Original Publication: London, Information Retrieval ltd.
    • الموضوع:
    • نبذة مختصرة :
      Transcriptional pausing aids gene regulation by cellular RNA polymerases (RNAPs). A surface-exposed domain inserted into the catalytic trigger loop (TL) of Escherichia coli RNAP, called SI3, modulates pausing and is essential for growth. Here we describe a viable E. coli strain lacking SI3 enabled by a suppressor TL substitution (β'Ala941→Thr; ΔSI3*). ΔSI3* increased transcription rate in vitro relative to ΔSI3, possibly explaining its viability, but retained both positive and negative effects of ΔSI3 on pausing. ΔSI3* inhibited pauses stabilized by nascent RNA structures (pause hairpins; PHs) but enhanced other pauses. Using NET-seq, we found that ΔSI3*-enhanced pauses resemble the consensus elemental pause sequence whereas sequences at ΔSI3*-suppressed pauses, which exhibited greater association with PHs, were more divergent. ΔSI3*-suppressed pauses also were associated with apparent pausing one nucleotide upstream from the consensus sequence, often generating tandem pause sites. These '-2 pauses' were stimulated by pyrophosphate in vitro and by addition of apyrase to degrade residual NTPs during NET-seq sample processing. We propose that some pauses are readily reversible by pyrophosphorolysis or single-nucleotide cleavage. Our results document multiple ways that SI3 modulates pausing in vivo and may explain discrepancies in consensus pause sequences in some NET-seq studies.
      (© The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.)
    • References:
      Curr Protoc Mol Biol. 2012 Apr;Chapter 4:Unit 4.14.1-17. (PMID: 22470065)
      Algorithms Mol Biol. 2011 Nov 24;6:26. (PMID: 22115189)
      PLoS Genet. 2016 Nov 29;12(11):e1006321. (PMID: 27898685)
      J Biol Chem. 2003 Apr 4;278(14):12344-55. (PMID: 12511572)
      J Mol Biol. 2013 Jan 9;425(1):82-93. (PMID: 23147217)
      Science. 2014 Jun 13;344(6189):1285-9. (PMID: 24926020)
      Nature. 2023 Jan;613(7945):783-789. (PMID: 36631609)
      Nucleic Acids Res. 2014 Nov 10;42(20):12707-21. (PMID: 25336618)
      Mol Cell. 2018 Mar 1;69(5):802-815.e5. (PMID: 29499135)
      EcoSal Plus. 2006 Jan;2(1):. (PMID: 26443574)
      J Biol Chem. 1974 Oct 25;249(20):6675-83. (PMID: 4608711)
      Genome Biol. 2009;10(3):R25. (PMID: 19261174)
      Nucleic Acids Res. 2012 Apr;40(8):3392-402. (PMID: 22210857)
      Proc Natl Acad Sci U S A. 2021 Sep 7;118(36):. (PMID: 34470825)
      Mol Cell. 2019 Jul 25;75(2):298-309.e4. (PMID: 31103420)
      Science. 1997 Sep 5;277(5331):1453-62. (PMID: 9278503)
      Front Mol Biosci. 2021 Jan 08;7:617633. (PMID: 33490108)
      Curr Opin Cell Biol. 2017 Jun;46:72-80. (PMID: 28363125)
      Mol Cell. 2022 Oct 20;82(20):3885-3900.e10. (PMID: 36220101)
      Biophys J. 2000 Nov;79(5):2754-60. (PMID: 11053148)
      Genome Biol. 2015 May 15;16:98. (PMID: 25976475)
      Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7090-5. (PMID: 10860976)
      J Mol Biol. 2015 Jul 31;427(15):2435-2450. (PMID: 26055538)
      Proc Natl Acad Sci U S A. 2018 Mar 13;115(11):2746-2751. (PMID: 29483274)
      J Mol Biol. 1973 Oct 25;80(2):327-44. (PMID: 4587405)
      Curr Opin Microbiol. 2003 Apr;6(2):151-6. (PMID: 12732305)
      Proc Natl Acad Sci U S A. 1985 Jul;82(14):4663-7. (PMID: 2991886)
      Mol Cell. 2008 Jun 6;30(5):557-66. (PMID: 18538654)
      Proc Natl Acad Sci U S A. 2023 Feb 21;120(8):e2215945120. (PMID: 36795753)
      J Mol Biol. 2005 Oct 14;353(1):138-54. (PMID: 16154587)
      Mol Cell. 2020 Sep 17;79(6):1024-1036.e5. (PMID: 32871103)
      J Mol Biol. 1989 Jul 5;208(1):23-43. (PMID: 2475637)
      J Mol Biol. 1984 May 5;175(1):75-81. (PMID: 6427470)
      Science. 2014 May 30;344(6187):1042-7. (PMID: 24789973)
      Nucleic Acids Res. 2021 May 7;49(8):4402-4420. (PMID: 33788942)
      J Biol Chem. 1989 Dec 5;264(34):20796-804. (PMID: 2479649)
      Proc Natl Acad Sci U S A. 2022 Apr 26;119(17):e2112677119. (PMID: 35439059)
      Nucleic Acids Res. 2019 Jan 8;47(D1):D212-D220. (PMID: 30395280)
      Genes Dev. 1994 Dec 1;8(23):2913-27. (PMID: 7527790)
      Curr Protoc Mol Biol. 2017 Jan 5;117:31.8.1-31.8.20. (PMID: 28060411)
      Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6555-60. (PMID: 22493230)
      J Mol Biol. 1997 Apr 25;268(1):54-68. (PMID: 9149141)
      Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):3323-8. (PMID: 22331895)
      Elife. 2019 Jan 08;8:. (PMID: 30618376)
      Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):E5103-E5112. (PMID: 28607053)
      Nat Commun. 2021 Sep 17;12(1):5524. (PMID: 34535658)
      Cell. 2023 Mar 16;186(6):1244-1262.e34. (PMID: 36931247)
      J Biol Chem. 2014 Jan 10;289(2):1151-63. (PMID: 24275665)
      BMC Struct Biol. 2003 Jan 28;3:1. (PMID: 12553882)
      Nucleic Acids Res. 1981 Oct 24;9(20):5493-504. (PMID: 7029471)
      Annu Rev Microbiol. 2021 Oct 8;75:291-314. (PMID: 34348029)
      Sci Rep. 2015 Oct 14;5:15096. (PMID: 26463009)
      J Biol Chem. 1998 Sep 18;273(38):24912-20. (PMID: 9733798)
      J Mol Biol. 2006 Mar 10;356(5):1163-79. (PMID: 16405998)
      Bioinformatics. 2009 Aug 15;25(16):2078-9. (PMID: 19505943)
      Nat Struct Mol Biol. 2023 Jul;30(7):902-913. (PMID: 37264140)
      Nature. 2011 Jan 20;469(7330):368-73. (PMID: 21248844)
      Proc Natl Acad Sci U S A. 2020 Sep 1;117(35):21628-21636. (PMID: 32817529)
      RNA. 2001 Apr;7(4):499-512. (PMID: 11345429)
      RNA Biol. 2022 Jan;19(1):916-927. (PMID: 35833713)
      EcoSal Plus. 2008 Sep;3(1):. (PMID: 26443740)
      Nat Methods. 2012 Jul;9(7):671-5. (PMID: 22930834)
      Molecules. 2017 Jul 13;22(7):. (PMID: 28703767)
      Mol Cell. 2018 Mar 1;69(5):816-827.e4. (PMID: 29499136)
      Bioinformatics. 2010 Mar 15;26(6):841-2. (PMID: 20110278)
      RNA. 2013 Nov;19(11):1461-73. (PMID: 24131802)
      Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20500-5. (PMID: 21057108)
      Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):8900-5. (PMID: 19416863)
      Nat Commun. 2022 Aug 15;13(1):4668. (PMID: 35970830)
      Science. 2001 Apr 27;292(5517):730-3. (PMID: 11326100)
      Nucleic Acids Res. 2017 Apr 7;45(6):3487-3502. (PMID: 27899632)
      J Bacteriol. 1974 Sep;119(3):736-47. (PMID: 4604283)
    • Grant Information:
      K99 AI166036 United States AI NIAID NIH HHS; R01 GM038660 United States GM NIGMS NIH HHS; R37 GM038660 United States GM NIGMS NIH HHS; GM38660 United States NH NIH HHS
    • الرقم المعرف:
      EC 2.7.7.6 (DNA-Directed RNA Polymerases)
      0 (Escherichia coli Proteins)
      EC 2.7.7.- (beta' subunit of RNA polymerase)
    • الموضوع:
      Date Created: 20240330 Date Completed: 20240508 Latest Revision: 20240803
    • الموضوع:
      20240803
    • الرقم المعرف:
      PMC11077087
    • الرقم المعرف:
      10.1093/nar/gkae209
    • الرقم المعرف:
      38554114