menu
Item request has been placed!
×
Item request cannot be made.
×

Hypoxia-Challenged Pancreatic Adenocarcinoma Cell-Derived Exosomal circR3HCC1L Drives Tumor Growth Via Upregulating PKM2 Through Sequestering miR-873-5p.
Item request has been placed!
×
Item request cannot be made.
×

- المؤلفون: Wang L;Wang L; Zhou S; Zhou S; Ruan Y; Ruan Y; Wu X; Wu X; Wu X; Zhang X; Zhang X; Li Y; Li Y; Ying D; Ying D; Lu Y; Lu Y; Tian Y; Tian Y; Cheng G; Cheng G; Zhang J; Zhang J; Lv K; Lv K; Zhou X; Zhou X
- المصدر:
Molecular biotechnology [Mol Biotechnol] 2025 Feb; Vol. 67 (2), pp. 762-777. Date of Electronic Publication: 2024 Mar 25.- نوع النشر :
Journal Article- اللغة:
English - المصدر:
- معلومة اضافية
- المصدر: Publisher: Springer Country of Publication: Switzerland NLM ID: 9423533 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-0305 (Electronic) Linking ISSN: 10736085 NLM ISO Abbreviation: Mol Biotechnol Subsets: MEDLINE
- بيانات النشر: Publication: [Cham] : Springer
Original Publication: Totowa, NJ : Humana Press, c1994- - الموضوع: Exosomes*/metabolism ; Exosomes*/genetics ; MicroRNAs*/genetics ; MicroRNAs*/metabolism ; RNA, Circular*/genetics ; RNA, Circular*/metabolism ; Pancreatic Neoplasms*/genetics ; Pancreatic Neoplasms*/pathology ; Pancreatic Neoplasms*/metabolism ; Thyroid Hormone-Binding Proteins* ; Cell Proliferation* ; Membrane Proteins*/metabolism ; Membrane Proteins*/genetics ; Thyroid Hormones*/metabolism ; Thyroid Hormones*/genetics ; Gene Expression Regulation, Neoplastic* ; Cell Movement*; Humans ; Animals ; Cell Line, Tumor ; Mice ; Adenocarcinoma/genetics ; Adenocarcinoma/metabolism ; Adenocarcinoma/pathology ; Up-Regulation ; Carrier Proteins/metabolism ; Carrier Proteins/genetics ; Mice, Nude ; Male ; Pyruvate Kinase/metabolism ; Pyruvate Kinase/genetics ; Female
- نبذة مختصرة : Competing Interests: Declarations. Ethics Approval: Written informed consents were obtained from all participants and this study was permitted by the Ethics Committee of Ningbo Medical Center Lihuili Hospital.
Pancreatic adenocarcinoma (PAAD) is a fatal disease with poor survival. Increasing evidence show that hypoxia-induced exosomes are associated with cancer progression. Here, we aimed to investigate the function of hsa_circ_0007678 (circR3HCC1L) and hypoxic PAAD cell-derived exosomal circR3HCC1L in PAAD progression. Through the exoRBase 2.0 database, we screened for a circular RNA circR3HCC1L related to PAAD. Changes of circR3HCC1L in PAAD samples and cells were analyzed with real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation, migration, invasion were analyzed by colony formation, cell counting, and transwell assays. Measurements of glucose uptake and lactate production were done using corresponding kits. Several protein levels were detected by western blotting. The regulation mechanism of circR3HCC1L was verified by dual-luciferase reporter, RNA immunoprecipitation, and RNA pull-down assays. Exosomes were separated by differential ultracentrifugation. Animal experiments were used to verify the function of hypoxia-derived exosomal circR3HCC1L. CircR3HCC1L was upregulated in PAAD samples and hypoxic PAAD cells. Knockdown of circR3HCC1L decreased hypoxia-driven PAAD cell proliferation, migration, invasion, and glycolysis. Hypoxic PAAD cell-derived exosomes had higher levels of circR3HCC1L, hypoxic PAAD cell-derived exosomal circR3HCC1L promoted normoxic cancer cell malignant transformation and glycolysis in vitro and xenograft tumor growth in mouse models in vivo. Mechanistically, circR3HCC1L regulated pyruvate kinase M2 (PKM2) expression via sponging miR-873-5p. Also, PKM2 overexpression or miR-873-5p silencing offset circR3HCC1L knockdown-mediated effects on hypoxia-challenged PAAD cell malignant transformation and glycolysis. Hypoxic PAAD cell-derived exosomal circR3HCC1L facilitated PAAD progression through the miR-873-5p/PKM2 axis, highlighting the contribution of hypoxic PAAD cell-derived exosomal circR3HCC1L in PAAD.
(© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.) - References: Lu, X., & Kang, Y. (2010). Hypoxia and hypoxia-inducible factors: Master regulators of metastasis. Clinical Cancer Research, 16(24), 5928–5935. https://doi.org/10.1158/1078-0432.ccr-10-1360. (PMID: 10.1158/1078-0432.ccr-10-1360209620283005023)
Ostergaard, L., Tietze, A., Nielsen, T., Drasbek, K. R., Mouridsen, K., Jespersen, S. N., & Horsman, M. R. (2013). The relationship between tumor blood flow, angiogenesis, tumor hypoxia, and aerobic glycolysis. Cancer Research, 73(18), 5618–5624. https://doi.org/10.1158/0008-5472.can-13-0964. (PMID: 10.1158/0008-5472.can-13-096423764543)
Yang, M., & Zhang, C. Y. (2021). Diagnostic biomarkers for pancreatic cancer: An update. World Journal of Gastroenterology, 27(45), 7862–7865. https://doi.org/10.3748/wjg.v27.i45.7862. (PMID: 10.3748/wjg.v27.i45.7862349637498661384)
Poels, T. T., & Vuijk, F. A. (2021). Molecular targeted positron emission tomography imaging and radionuclide therapy of pancreatic ductal adenocarcinoma. Cancers, 13(24), 6164. https://doi.org/10.3390/cancers13246164. (PMID: 10.3390/cancers13246164349447818699493)
Daniel, S. K., Sullivan, K. M., Labadie, K. P., & Pillarisetty, V. G. (2019). Hypoxia as a barrier to immunotherapy in pancreatic adenocarcinoma. Clinical and Translational Medicine, 8(1), 10. https://doi.org/10.1186/s40169-019-0226-9. (PMID: 10.1186/s40169-019-0226-9309315086441665)
Jia, Y., Li, H. Y., Wang, Y., Wang, J., Zhu, J. W., Wei, Y. Y., Lou, L., Chen, X., & Mo, S. J. (2021). Crosstalk between hypoxia-sensing ULK1/2 and YAP-driven glycolysis fuels pancreatic ductal adenocarcinoma development. International Journal of Biological Sciences, 17(11), 2772–2794. https://doi.org/10.7150/ijbs.60018. (PMID: 10.7150/ijbs.60018343452078326115)
Pegtel, D. M., & Gould, S. J. (2019). Exosomes. Annual Review of Biochemistry, 88, 487–514. https://doi.org/10.1146/annurev-biochem-013118-111902. (PMID: 10.1146/annurev-biochem-013118-11190231220978)
Mathivanan, S., Ji, H., & Simpson, R. J. (2010). Exosomes: Extracellular organelles important in intercellular communication. Journal of Proteomics, 73(10), 1907–1920. https://doi.org/10.1016/j.jprot.2010.06.006. (PMID: 10.1016/j.jprot.2010.06.00620601276)
Chen, B. Y., Sung, C. W., Chen, C., Cheng, C. M., Lin, D. P., Huang, C. T., & Hsu, M. Y. (2019). Advances in exosomes technology. Clinica Chimica Acta, 493, 14–19. https://doi.org/10.1016/j.cca.2019.02.021. (PMID: 10.1016/j.cca.2019.02.021)
Jan, A. T., & Rahman, S. (2019). Biology, pathophysiological role, and clinical implications of exosomes: A critical. Appraisal. https://doi.org/10.3390/cells8020099. (PMID: 10.3390/cells8020099)
Wortzel, I., Dror, S., Kenific, C. M., & Lyden, D. (2019). Exosome-mediated metastasis: Communication from a distance. Developmental Cell, 49(3), 347–360. https://doi.org/10.1016/j.devcel.2019.04.011. (PMID: 10.1016/j.devcel.2019.04.01131063754)
Tai, Y. L., Chen, K. C., Hsieh, J. T., & Shen, T. L. (2018). Exosomes in cancer development and clinical applications. Cancer Science, 109(8), 2364–2374. https://doi.org/10.1111/cas.13697. (PMID: 10.1111/cas.13697299081006113508)
Dai, J., Su, Y., Zhong, S., Cong, L., Liu, B., Yang, J., & Tao, Y. (2020). Exosomes: Key players in cancer and potential therapeutic strategy. Signal Transduction and Targeted Therapy, 5(1), 145. https://doi.org/10.1038/s41392-020-00261-0. (PMID: 10.1038/s41392-020-00261-0327599487406508)
Kristensen, L. S., Andersen, M. S., Stagsted, L. V. W., Ebbesen, K. K., & Hansen, T. B. (2019). The biogenesis, biology and characterization of circular RNAs. Nature Reviews Genetics, 20(11), 675–691. https://doi.org/10.1038/s41576-019-0158-7. (PMID: 10.1038/s41576-019-0158-731395983)
Xiao, M. S., Ai, Y., & Wilusz, J. E. (2020). Biogenesis and functions of circular RNAs come into focus. Trends in Cell Biology, 30(3), 226–240. https://doi.org/10.1016/j.tcb.2019.12.004. (PMID: 10.1016/j.tcb.2019.12.004319739517069689)
Guo, X., Zhou, Q., Su, D., Luo, Y., Fu, Z., Huang, L., Li, Z., Jiang, D., Kong, Y., Li, Z., Chen, R., & Chen, C. (2020). Circular RNA circBFAR promotes the progression of pancreatic ductal adenocarcinoma via the miR-34b-5p/MET/Akt axis. Molecular Cancer, 19(1), 83. https://doi.org/10.1186/s12943-020-01196-4. (PMID: 10.1186/s12943-020-01196-4323757687201986)
Guan, H., Luo, W., Liu, Y., & Li, M. (2021). Novel circular RNA circSLIT2 facilitates the aerobic glycolysis of pancreatic ductal adenocarcinoma via miR-510-5p/c-Myc/LDHA axis. Cell Death & Disease, 12(7), 645. https://doi.org/10.1038/s41419-021-03918-y. (PMID: 10.1038/s41419-021-03918-y)
Rong, Z., Shi, S., Tan, Z., Xu, J., Meng, Q., Hua, J., Liu, J., Zhang, B., Wang, W., Yu, X., & Liang, C. (2021). Circular RNA CircEYA3 induces energy production to promote pancreatic ductal adenocarcinoma progression through the miR-1294/c-Myc axis. Molecular Cancer, 20(1), 106. https://doi.org/10.1186/s12943-021-01400-z. (PMID: 10.1186/s12943-021-01400-z344190708379744)
Yang, H., Zhang, H., Yang, Y., Wang, X., Deng, T., Liu, R., Ning, T., Bai, M., Li, H., Zhu, K., Li, J., Fan, Q., Ying, G., & Ba, Y. (2020). Hypoxia induced exosomal circRNA promotes metastasis of Colorectal Cancer via targeting GEF-H1/RhoA axis. Theranostics, 10(18), 8211–8226. https://doi.org/10.7150/thno.44419. (PMID: 10.7150/thno.44419327244677381736)
Zeng, Z., Zhao, Y., Chen, Q., Zhu, S., Niu, Y., Ye, Z., Hu, P., Chen, D., Xu, P., Chen, J., Hu, C., Hu, Y., Xu, F., Tang, J., Wang, F., & Han, S. (2021). Hypoxic exosomal HIF-1α-stabilizing circZNF91 promotes chemoresistance of normoxic pancreatic cancer cells via enhancing glycolysis. Oncogene, 40(36), 5505–5517. https://doi.org/10.1038/s41388-021-01960-w. (PMID: 10.1038/s41388-021-01960-w34294845)
Zhan, Y., Du, J., Min, Z., Ma, L., Zhang, W., Zhu, W., & Liu, Y. (2021). Carcinoma-associated fibroblasts derived exosomes modulate breast cancer cell stemness through exonic circHIF1A by miR-580-5p in hypoxic stress. Cell Death Discov, 7(1), 141. https://doi.org/10.1038/s41420-021-00506-z. (PMID: 10.1038/s41420-021-00506-z341201458197761)
Shang, A., Gu, C., Wang, W., Wang, X., Sun, J., Zeng, B., Chen, C., Chang, W., Ping, Y., Ji, P., Wu, J., Quan, W., Yao, Y., Zhou, Y., Sun, Z., & Li, D. (2020). Exosomal circPACRGL promotes progression of colorectal cancer via the miR-142–3p/miR-506–3p- TGF-β1 axis. Molecular Cancer, 19(1), 117. https://doi.org/10.1186/s12943-020-01235-0. (PMID: 10.1186/s12943-020-01235-0327133457384220)
Zhang, X., Sai, B., Wang, F., Wang, L., Wang, Y., Zheng, L., Li, G., Tang, J., & Xiang, J. (2019). Hypoxic BMSC-derived exosomal miRNAs promote metastasis of lung cancer cells via STAT3-induced EMT. Molecular Cancer, 18(1), 40. https://doi.org/10.1186/s12943-019-0959-5. (PMID: 10.1186/s12943-019-0959-5308669526417285)
Lin, J., Wang, X., Zhai, S., Shi, M., Peng, C., Deng, X., Fu, D., Wang, J., & Shen, B. (2022). Hypoxia-induced exosomal circPDK1 promotes pancreatic cancer glycolysis via c-myc activation by modulating miR-628-3p/BPTF axis and degrading BIN1. Journal of Hematology Oncology, 15(1), 128. https://doi.org/10.1186/s13045-022-01348-7. (PMID: 10.1186/s13045-022-01348-7360685869450374)
Xue, M., Chen, W., Xiang, A., Wang, R., Chen, H., Pan, J., Pang, H., An, H., Wang, X., Hou, H., & Li, X. (2017). Hypoxic exosomes facilitate bladder tumor growth and development through transferring long non-coding RNA-UCA1. Molecular Cancer, 16(1), 143. https://doi.org/10.1186/s12943-017-0714-8. (PMID: 10.1186/s12943-017-0714-8288418295574139)
Rankin, E. B., & Giaccia, A. J. (2016). Hypoxic control of metastasis. Science, 352(6282), 175–180. https://doi.org/10.1126/science.aaf4405. (PMID: 10.1126/science.aaf4405271244514898055)
Zahra, K., Dey, T., Ashish, Mishra, S. P., & Pandey, U. (2020). Pyruvate kinase M2 and cancer: The role of PKM2 in promoting tumorigenesis. Frontiers in Oncology. https://doi.org/10.3389/fonc.2020.00159. (PMID: 10.3389/fonc.2020.00159321951697061896)
Ackerman, D., & Simon, M. C. (2014). Hypoxia, lipids, and cancer: Surviving the harsh tumor microenvironment. Trends in Cell Biology, 24(8), 472–478. https://doi.org/10.1016/j.tcb.2014.06.001. (PMID: 10.1016/j.tcb.2014.06.001249859404112153)
Li, T., Mao, C., Wang, X., Shi, Y., & Tao, Y. (2020). Epigenetic crosstalk between hypoxia and tumor driven by HIF regulation. Journal of Experimental Clinical Cancer Research, 39(1), 224. https://doi.org/10.1186/s13046-020-01733-5. (PMID: 10.1186/s13046-020-01733-5331092357592369)
Kumar, A., & Deep, G. (2020). Exosomes in hypoxia-induced remodeling of the tumor microenvironment. Cancer Letter, 488, 1–8. https://doi.org/10.1016/j.canlet.2020.05.018. (PMID: 10.1016/j.canlet.2020.05.018)
Zhang, P. F., Gao, C., Huang, X. Y., Lu, J. C., Guo, X. J., Shi, G. M., Cai, J. B., & Ke, A. W. (2020). Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma. Molecular Cancer, 19(1), 110. https://doi.org/10.1186/s12943-020-01222-5. (PMID: 10.1186/s12943-020-01222-5325933037320583)
Xie, M., Yu, T., Jing, X., Ma, L., Fan, Y., Yang, F., Ma, P., Jiang, H., Wu, X., & Shu, Y. (2020). Exosomal circSHKBP1 promotes gastric cancer progression via regulating the miR-582–3p/HUR/VEGF axis and suppressing HSP90 degradation. Molecular Cancer, 19(1), 112. https://doi.org/10.1186/s12943-020-01208-3. (PMID: 10.1186/s12943-020-01208-3326003297322843)
Mitra, A., Pfeifer, K., & Park, K.-S. (2018). Circular RNAs and competing endogenous RNA (ceRNA) networks. Translational Cancer Research, 7(Suppl 5), S624–S628. (PMID: 10.21037/tcr.2018.05.1230159229)
Azoitei, N., Becher, A., Steinestel, K., Rouhi, A., Diepold, K., Genze, F., Simmet, T., & Seufferlein, T. (2016). PKM2 promotes tumor angiogenesis by regulating HIF-1α through NF-κB activation. Molecular Cancer. https://doi.org/10.1186/s12943-015-0490-2. (PMID: 10.1186/s12943-015-0490-2267393874704385)
Guo, Q., Wang, T., Yang, Y., Gao, L., Zhao, Q., Zhang, W., Xi, T., & Zheng, L. (2020). Transcriptional factor Yin Yang 1 promotes the stemness of breast cancer cells by suppressing miR-873–5p transcriptional activity. Molecular Therapy-Nucleic Acids, 21, 527–541. https://doi.org/10.1016/j.omtn.2020.06.018. (PMID: 10.1016/j.omtn.2020.06.018327113807381513)
Wu, T., Zhang, D. L., Wang, J. M., Jiang, J. Y., & Du, X. (2020). TRIM29 inhibits miR-873–5P biogenesis via CYTOR to upregulate fibronectin 1 and promotes invasion of papillary thyroid cancer cells. Cell Death Disease, 11(9), 813. https://doi.org/10.1038/s41419-020-03018-3. (PMID: 10.1038/s41419-020-03018-3329943947525524)
Li, S., & Lin, L. (2021). Long noncoding RNA MCF2L-AS1 promotes the cancer stem cell-like traits in non-small cell lung cancer cells through regulating miR-873–5p level. Environmental Toxicology, 36(7), 1457–1465. https://doi.org/10.1002/tox.23142. (PMID: 10.1002/tox.2314233783940)
Yang, X. L., Ma, Y. S., Liu, Y. S., Jiang, X. H., Ding, H., Shi, Y., Jia, C. Y., Lu, G. X., Zhang, D. D., Wang, H. M., Wang, P. Y., Lv, Z. W., Yu, F., Liu, J. B., & Fu, D. (2021). microRNA-873 inhibits self-renewal and proliferation of pancreatic cancer stem cells through pleckstrin-2-dependent PI3K/AKT pathway. Cellular Signalling. https://doi.org/10.1016/j.cellsig.2021.110025. (PMID: 10.1016/j.cellsig.2021.110025349543948869839)
Mokhlis, H. A., Bayraktar, R., Kabil, N. N., Caner, A., Kahraman, N., Rodriguez-Aguayo, C., Zambalde, E. P., Sheng, J., Karagoz, K., Kanlikilicer, P., Abdel Aziz, A. A. H., Abdelghany, T. M., Ashour, A. A., Wong, S., Gatza, M. L., Calin, G. A., Lopez-Berestein, G., & Ozpolat, B. (2019). The Modulatory role of MicroRNA-873 in the progression of KRAS-driven cancers. Molecular Therapy-Nucleic Acids, 14, 301–317. https://doi.org/10.1016/j.omtn.2018.11.019. (PMID: 10.1016/j.omtn.2018.11.01930654191)
Zhu, S., Guo, Y., Zhang, X., Liu, H., Yin, M., Chen, X., & Peng, C. (2021). Pyruvate kinase M2 (PKM2) in cancer and cancer therapeutics. Cancer Letters, 503, 240–248. https://doi.org/10.1016/j.canlet.2020.11.018. (PMID: 10.1016/j.canlet.2020.11.01833246091)
Luo, W., Hu, H., Chang, R., Zhong, J., Knabel, M., O’Meally, R., Cole, R. N., Pandey, A., & Semenza, G. L. (2011). Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell, 145(5), 732–744. https://doi.org/10.1016/j.cell.2011.03.054. (PMID: 10.1016/j.cell.2011.03.054216201383130564)
Koo, H., & Byun, S. (2021). PKM2 regulates HSP90-mediated stability of the IGF-1R precursor protein and promotes cancer cell survival during hypoxia. Cancers. https://doi.org/10.3390/cancers13153850. (PMID: 10.3390/cancers13153850345729388472558)
Lockney, N. A., Zhang, M., Lu, Y., Sopha, S. C., Washington, M. K., Merchant, N., Zhao, Z., Shyr, Y., Chakravarthy, A. B., & Xia, F. (2015). Pyruvate kinase muscle isoenzyme 2 (PKM2) expression is associated with overall survival in pancreatic ductal adenocarcinoma. Journal of Gastrointestinal Cancer, 46(4), 390–398. https://doi.org/10.1007/s12029-015-9764-6. (PMID: 10.1007/s12029-015-9764-6263853497081381)
Yokoyama, M., Tanuma, N., Shibuya, R., Shiroki, T., Abue, M., Yamamoto, K., Miura, K., Yamaguchi, K., Sato, I., Tamai, K., & Satoh, K. (2018). Pyruvate kinase type M2 contributes to the development of pancreatic ductal adenocarcinoma by regulating the production of metabolites and reactive oxygen species. International Journal of Oncology, 52(3), 881–891. https://doi.org/10.3892/ijo.2018.4258. (PMID: 10.3892/ijo.2018.425829393401)
Cheng, T. Y., Yang, Y. C., Wang, H. P., Tien, Y. W., Shun, C. T., Huang, H. Y., Hsiao, M., & Hua, K. T. (2018). Pyruvate kinase M2 promotes pancreatic ductal adenocarcinoma invasion and metastasis through phosphorylation and stabilization of PAK2 protein. Oncogene, 37(13), 1730–1742. https://doi.org/10.1038/s41388-017-0086-y. (PMID: 10.1038/s41388-017-0086-y29335522) - Grant Information: 2019ZYC-A107 Clinical Research Fund project of Zhejiang Medical Association; B20318EN Beijing Medical and Health Foundation; 2021C25G2250721 Zhejiang Soft Science Research Program; 2024ZL949 The Project of Zhejiang Province Traditional Chinese Medicine Science and Technology Plan
- Contributed Indexing: Keywords: CircR3HCC1L; Exosomes; Hypoxia; PAAD; PKM2; miR-873-5p
- الرقم المعرف: 0 (MicroRNAs)
0 (RNA, Circular)
0 (Thyroid Hormone-Binding Proteins)
0 (Membrane Proteins)
0 (Thyroid Hormones)
0 (Carrier Proteins)
EC 2.7.1.40 (Pyruvate Kinase) - الموضوع: Date Created: 20240325 Date Completed: 20250108 Latest Revision: 20250108
- الموضوع: 20250110
- الرقم المعرف: 10.1007/s12033-024-01091-z
- الرقم المعرف: 38526683
- المصدر:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login

حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.