menu
Item request has been placed!
×
Item request cannot be made.
×

Regional modulation of toll-like receptor signaling pathway genes in acute epididymitis in mice.
Item request has been placed!
×
Item request cannot be made.
×

- المؤلفون: Andrade AD;Andrade AD; Almeida PGC; Almeida PGC; Mariani NAP; Mariani NAP; Santos NCM; Santos NCM; Camargo IA; Camargo IA; Martini PV; Martini PV; Kushima H; Kushima H; Ai D; Ai D; Avellar MCW; Avellar MCW; Meinhardt A; Meinhardt A; Meinhardt A; Meinhardt A; Pleuger C; Pleuger C; Pleuger C; Silva EJR; Silva EJR
- المصدر:
Andrology [Andrology] 2024 Jul; Vol. 12 (5), pp. 1024-1037. Date of Electronic Publication: 2024 Mar 18.- نوع النشر :
Journal Article- اللغة:
English - المصدر:
- معلومة اضافية
- المصدر: Publisher: Wiley-Blackwell Country of Publication: England NLM ID: 101585129 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2047-2927 (Electronic) Linking ISSN: 20472919 NLM ISO Abbreviation: Andrology Subsets: MEDLINE
- بيانات النشر: Original Publication: Oxford : Wiley-Blackwell, 2013-
- الموضوع: Epididymitis*/genetics ; Epididymitis*/metabolism ; Epididymitis*/microbiology ; Signal Transduction* ; Lipopolysaccharides* ; Toll-Like Receptor 4*/metabolism ; Toll-Like Receptor 4*/genetics ; Toll-Like Receptor 2*/genetics ; Toll-Like Receptor 2*/metabolism ; Teichoic Acids*/pharmacology; Animals ; Male ; Mice ; Uropathogenic Escherichia coli ; Escherichia coli Infections/immunology ; Escherichia coli Infections/genetics ; Toll-Like Receptor 6/genetics ; Toll-Like Receptor 6/metabolism ; Epididymis/metabolism ; TNF Receptor-Associated Factor 6/metabolism ; TNF Receptor-Associated Factor 6/genetics ; Myeloid Differentiation Factor 88/genetics ; Myeloid Differentiation Factor 88/metabolism ; Mice, Inbred C57BL ; Acute Disease
- نبذة مختصرة : Background: Region-specific immune environments in the epididymis influence the immune responses to uropathogenic Escherichia coli (UPEC) infection, a relevant cause of epididymitis in men. Toll-like receptors (TLRs) are essential to orchestrate immune responses against bacterial infections. The epididymis displays region-specific inflammatory responses to bacterial-derived TLR agonists, such as lipopolysaccharide (LPS; TLR4 agonist) and lipoteichoic acid (LTA; TLR2/TLR6 agonist), suggesting that TLR-associated signaling pathways could influence the magnitude of inflammatory responses in epididymitis.
Objectives: To investigate the expression and regulation of key genes associated with TLR4 and TLR2/TLR6 signaling pathways during epididymitis induced by UPEC, LPS, and LTA in mice.
Material and Methods: Epididymitis was induced in mice using UPEC, ultrapure LPS, or LTA, injected into the interstitial space of the initial segment or the lumen of the vas deferens close to the cauda epididymidis. Samples were harvested after 1, 5, and 10 days for UPEC-treated animals and 6 and 24 h for LPS-/LTA-treated animals. Ex vivo epididymitis was induced by incubating epididymal regions from naive mice with LPS or LTA. RT-qPCR and Western blot assays were conducted.
Results: UPEC infection up-regulated Tlr2, Tlr4, and Tlr6 transcripts and their associated signaling molecules Cd14, Ticam1, and Traf6 in the cauda epididymidis but not in the initial segment. In these epididymal regions, LPS and LTA differentially modulated Tlr2, Tlr4, Tlr6, Cd14, Myd88, Ticam1, Traf3, and Traf6 expression levels. NFKB and AP1 activation was required for LPS- and LTA-induced up-regulation of TLR-associated signaling transcripts in the cauda epididymidis and initial segment, respectively.
Conclusion: The dynamic modulation of TLR4 and TLR2/TLR6 signaling pathways gene expression during epididymitis indicates bacterial-derived antigens elicit an increased tissue sensitivity to combat microbial infection in a spatial manner in the epididymis. Differential activation of TLR-associated signaling pathways may contribute to fine-tuning inflammatory responses along the epididymis.
(© 2024 American Society of Andrology and European Academy of Andrology.) - References: Hinton BT, Palladino MA, Rudolph D, Lan ZJ, Labus JC. The role of the epididymis in the protection of spermatozoa. Curr Top Dev Biol. 1996;33:61‐102. doi:10.1016/S0070‐2153(08)60337‐3.
Hinton BT, Palladino MA. Epididymal epithelium: its contribution to the formation of a luminal fluid microenvironment. Microsc Res Tech. 1995;30(1):67‐81. doi:10.1002/jemt.1070300106.
Johnston DS, Kopf GS, DiCandeloro P, et al. The mouse epididymal transcriptome: transcriptional profiling of segmental gene expression in the epididymis1. Biol Reprod. 2005;73(3):404‐413. doi:10.1095/biolreprod.105.039719.
Battistone MA, Mendelsohn AC, Spallanzani RG, Brown D, Nair AV, Breton S. Region‐specific transcriptomic and functional signatures of mononuclear phagocytes in the epididymis. Mol Hum Reprod. 2020;26(1):14‐29. doi:10.1093/molehr/gaz059.
Da Silva N, Cortez‐Retamozo V, Reinecker HC, et al. A dense network of dendritic cells populates the murine epididymis. Reproduction. 2011;141(5):653‐663. doi:10.1530/REP‐10‐0493.
Smith TB, Cortez‐Retamozo V, Grigoryeva LS, Hill E, Pittet MJ, Da Silva N. Mononuclear phagocytes rapidly clear apoptotic epithelial cells in the proximal epididymis. Andrology. 2014;2(5):755‐762. doi:10.1111/j.2047‐2927.2014.00251.x.
Shum WW, Smith TB, Cortez‐Retamozo V, et al. Epithelial basal cells are distinct from dendritic cells and macrophages in the mouse epididymis. Biol Reprod. 2014;90(5):90, 1‐10. doi:10.1095/biolreprod.113.116681.
Voisin A, Whitfield M, Damon‐Soubeyrand C, et al. Comprehensive overview of murine epididymal mononuclear phagocytes and lymphocytes: unexpected populations arise. J Reprod Immunol. 2018;126:11‐17. doi:10.1016/j.jri.2018.01.003.
Mendelsohn AC, Sanmarco LM, Spallanzani RG, et al. From initial segment to cauda: a regional characterization of mouse epididymal CD11c+ mononuclear phagocytes based on immune phenotype and function. Am J Physiol Cell Physiol. 2020;319(6):C997‐C1010. doi:10.1152/ajpcell.00392.2020.
Barrachina F, Ottino K, Tu LJ, et al. CX3CR1 deficiency leads to impairment of immune surveillance in the epididymis. Cell Mol Life Sci. 2022;80(1):15. doi:10.1007/s00018‐022‐04664‐w.
Michel V, Duan Y, Stoschek E, et al. Uropathogenic Escherichia coli causes fibrotic remodelling of the epididymis. J Pathol. 2016;240(1):15‐24. doi:10.1002/path.4748.
Klein B, Bhushan S, Günther S, et al. Differential tissue‐specific damage caused by bacterial epididymo‐orchitis in the mouse. Mol Hum Reprod. 2020;26(4):215‐227. doi:10.1093/molehr/gaaa011.
Rusz A, Pilatz A, Wagenlehner F, et al. Influence of urogenital infections and inflammation on semen quality and male fertility. World J Urol. 2012;30(1):23‐30. doi:10.1007/s00345‐011‐0726‐8.
Schuppe HC, Pilatz A, Hossain H, Diemer T, Wagenlehner F, Weidner W. Urogenital infection as a risk factor for male infertility. Dtsch Arztebl Int. 2017;114(19):339‐346. doi:10.3238/arztebl.2017.0339.
Silva EJR, Ribeiro CM, Mirim AFM, et al. Lipopolysaccharide and lipotheicoic acid differentially modulate epididymal cytokine and chemokine profiles and sperm parameters in experimental acute epididymitis. Sci Rep. 2018;8(1):103. doi:10.1038/s41598‐017‐17944‐4.
Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine. 2008;42(2):145‐151. doi:10.1016/j.cyto.2008.01.006.
Qian C, Cao X. Regulation of toll‐like receptor signaling pathways in innate immune responses. Ann N Y Acad Sci. 2013;1283(1):67‐74. doi:10.1111/j.1749‐6632.2012.06786.x.
Takeda K, Akira S. Toll‐like receptors. Curr Protoc Immunol. 2015;109(1):14.12.1‐14.12.10. doi:10.1002/0471142735.im1412s109.
Cheng L, Wu H, Shi L, et al. Toll‐like receptors 4 and 5 cooperatively initiate the innate immune responses to uropathogenic Escherichia coli infection in mouse epididymal epithelial cells. Biol Reprod. 2016;94(3):58. doi:10.1095/biolreprod.115.136580.
Fujioka S, Niu J, Schmidt C, et al. NF‐κB and AP‐1 connection: mechanism of NF‐κB‐dependent regulation of AP‐1 activity. Mol Cell Biol. 2004;24(17):7806‐7819. doi:10.1128/MCB.24.17.7806‐7819.2004.
Ferreira LGA, Nishino FA, Fernandes SG, Ribeiro CM, Hinton BT, Avellar MCW. Epididymal embryonic development harbors TLR4/NFKB signaling pathway as a morphogenetic player. J Reprod Immunol. 2022;149:103456. doi:10.1016/j.jri.2021.103456.
Welch RA, Burland V, Plunkett G, et al. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci. 2002;99(26):17020‐17024. doi:10.1073/pnas.252529799.
Pleuger C, Ai D, Hoppe ML, et al. The regional distribution of resident immune cells shapes distinct immunological environments along the murine epididymis. eLife. 2022;11:e82193. doi:10.7554/eLife.82193.
Andrade AD, Almeida PGC, Mariani NAP, et al. Lipopolysaccharide‐induced epididymitis modifies the transcriptional profile of Wfdc genes in mice. Biol Reprod. 2021;104(1):144‐158. doi:10.1093/biolre/ioaa189.
Rodrigues A, Queiróz DBC, Silva EJR, Honda L, Avellar MCW, Hall SH. Activation of toll‐like receptor 4 (TLR4) by in vivo and in vitro exposure of rat epididymis to lipopolysaccharide from Escherichia coli. Biol Reprod. 2008;79(6):1135‐1147. doi:10.1095/biolreprod.108.069930.
Bennett BL, Sasaki DT, Murray BW, et al. SP600125, an anthrapyrazolone inhibitor of Jun N‐terminal kinase. Proc Natl Acad Sci. 2001;98(24):13681‐13686. doi:10.1073/pnas.251194298.
Pfaffl MW. A new mathematical model for relative quantification in real‐time RT‐PCR. Nucl Acids Res. 2001;29(9):e45‐e45. doi:10.1093/nar/29.9.e45.
Mariani NAP, Camara AC, Silva AAS, et al. Epididymal protease inhibitor (EPPIN) is a protein hub for seminal vesicle‐secreted protein SVS2 binding in mouse spermatozoa. Mol Cell Endocrinol. 2020;506:110754. doi:10.1016/j.mce.2020.110754.
Klein B, Pant S, Bhushan S, et al. Dexamethasone improves therapeutic outcomes in a preclinical bacterial epididymitis mouse model. Hum Reprod. 2019;34(7):1195‐1205. doi:10.1093/humrep/dez073.
O'Neill LAJ, Golenbock D, Bowie AG. The history of toll‐like receptors — redefining innate immunity. Nat Rev Immunol. 2013;13(6):453‐460. doi:10.1038/nri3446.
McConaghy JR, Panchal B. Epididymitis: an overview. Am Fam Physician. 2016;94(9):723‐726.
Pilatz A, Hossain H, Kaiser R, et al. Acute epididymitis revisited: impact of molecular diagnostics on etiology and contemporary guideline recommendations. Eur Urol. 2015;68(3):428‐435. doi:10.1016/j.eururo.2014.12.005.
Turner TT. De graaf's thread: the human epididymis. J Androl. 2008;29(3):237‐250. doi:10.2164/jandrol.107.004119.
Browne JA, Leir SH, Eggener SE, Harris A. Region‐specific innate antiviral responses of the human epididymis. Mol Cell Endocrinol. 2018;473:72‐78. doi:10.1016/j.mce.2018.01.004.
El‐Zayat SR, Sibaii H, Mannaa FA. Toll‐like receptors activation, signaling, and targeting: an overview. Bull Natl Res Cent. 2019;43(1):187. doi:10.1186/s42269‐019‐0227‐2.
Fijak M, Bhushan S, Michel V, et al. Infectious, inflammatory and ‘autoimmune’ male factor infertility: how do rodent models inform clinical practice? Hum Reprod Update. 2018;24(4):416‐441. doi:10.1093/humupd/dmy009.
Fitzgerald KA, Kagan JC. Toll‐like receptors and the control of immunity. Cell. 2020;180(6):1044‐1066. doi:10.1016/j.cell.2020.02.041.
Gong J, Wang P, Liu JC, et al. Integrative analysis of small RNA and mRNA expression profiles identifies signatures associated with chronic epididymitis. Front Immunol. 2022;13:883803. doi:10.3389/fimmu.2022.883803.
Bhushan S, Tchatalbachev S, Klug J, et al. Uropathogenic Escherichia coli block MyD88‐dependent and activate MyD88‐independent signaling pathways in rat testicular cells. J Immunol. 2008;180(8):5537‐5547. doi:10.4049/jimmunol.180.8.5537.
Hunstad David A, Justice Sheryl S, Hung Chia S, Lauer Scott R, Hultgren Scott J. Suppression of bladder epithelial cytokine responses by uropathogenic Escherichia coli. Infect Immun. 2005;73(7):3999‐4006. doi:10.1128/iai.73.7.3999‐4006.2005.
Anders HJ, Patole PS. Toll‐like receptors recognize uropathogenic Escherichia coli and trigger inflammation in the urinary tract. Nephrol Dial Transplant. 2005;20(8):1529‐1532. doi:10.1093/ndt/gfh922.
Demirel I, Persson A, Brauner A, Särndahl E, Kruse R, Persson K. Activation of NLRP3 by uropathogenic Escherichia coli is associated with IL‐1β release and regulation of antimicrobial properties in human neutrophils. Sci Rep. 2020;10(1):21837. doi:10.1038/s41598‐020‐78651‐1.
Lu Y, Rafiq A, Zhang Z, et al. Uropathogenic Escherichia coli virulence factor hemolysin A causes programmed cell necrosis by altering mitochondrial dynamics. FASEB J. 2018;32(8):4107‐4120. doi:10.1096/fj.201700768R.
Trinchieri G, Sher A. Cooperation of toll‐like receptor signals in innate immune defence. Nat Rev Immunol. 2007;7(3):179‐190. doi:10.1038/nri2038.
Hedger MP. Immunophysiology and pathology of inflammation in the testis and epididymis. J Androl. 2011;32(6):625‐640. doi:10.2164/jandrol.111.012989.
Palladino MA, Savarese MA, Chapman JL, Dughi MK, Plaska D. Localization of toll‐like receptors on epididymal epithelial cells and spermatozoa. Am J Reprod Immunol. 2008;60(6):541‐555. doi:10.1111/j.1600‐0897.2008.00654.x.
Zhao YT, Guo JH, Wu ZL, Xiong Y, Zhou WL. Innate immune responses of epididymal epithelial cells to Staphylococcus aureus infection. Immunol Lett. 2008;119(1):84‐90. doi:10.1016/j.imlet.2008.05.002.
Liu JC, Wang P, Zeng QX, et al. Myd88 signaling is involved in the inflammatory response in LPS‐induced mouse epididymitis and bone‐marrow‐derived dendritic cells. Int J Mol Sci. 2023;24(9):7838. doi:10.3390/ijms24097838.
Song X, Lin NH, Wang YL, Chen B, Wang HX, Hu K. Comprehensive transcriptome analysis based on RNA sequencing identifies critical genes for lipopolysaccharide‐induced epididymitis in a rat model. Asian J Androl. 2019;21(6):605‐611. doi:10.4103/aja.aja_21_19.
Hirai S, Naito M, Terayama H, et al. Difference in abundance of blood and lymphatic capillaries in the murine epididymis. Med Mol Morphol. 2010;43(1):37‐42. doi:10.1007/s00795‐009‐0473‐8.
Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428‐435. doi:10.1038/nature07201.
Zhu W, Zhao S, Liu Z, et al. Pattern recognition receptor‐initiated innate antiviral responses in mouse epididymal epithelial cells. J Immunol. 2015;194(10):4825. doi:10.4049/jimmunol.1402706.
Meng Q, Xia Y. c‐Jun, at the crossroad of the signaling network. Protein Cell. 2011;2(11):889‐898. doi:10.1007/s13238‐011‐1113‐3.
Waudby CA, Alvarez‐Teijeiro S, Josue Ruiz E, et al. An intrinsic temporal order of c‐JUN N‐terminal phosphorylation regulates its activity by orchestrating co‐factor recruitment. Nat Commun. 2022;13(1):6133. doi:10.1038/s41467‐022‐33866‐w.
Pleuger C, Silva EJR, Pilatz A, Bhushan S, Meinhardt A. Differential immune response to infection and acute inflammation along the epididymis. Front Immunol. 2020;11:3125. doi:10.3389/fimmu.2020.599594.
Wang M, Yang Y, Cansever D, et al. Two populations of self‐maintaining monocyte‐independent macrophages exist in adult epididymis and testis. Proc Natl Acad Sci. 2021;118(1):e2013686117. doi:10.1073/pnas.2013686117.
Battistone MA, Elizagaray ML, Barrachina F, Ottino K, Mendelsohn AC, Breton S. Immunoregulatory mechanisms between epithelial clear cells and mononuclear phagocytes in the epididymis. Andrology. 2023;1‐15. doi:10.1111/andr.13509.
Liu T, Zhang L, Joo D, Sun SC. NF‐κB signaling in inflammation. Signal Transduct Target Ther. 2017;2(1):17023. doi:10.1038/sigtrans.2017.23.
Khalaf H, Jass J, Olsson PE. Differential cytokine regulation by NF‐κB and AP‐1 in Jurkat T‐cells. BMC Immunol. 2010;11(1):26. doi:10.1186/1471‐2172‐11‐26.
Viola A, Munari F, Sánchez‐Rodríguez R, Scolaro T, Castegna A. The metabolic signature of macrophage responses. Front Immunol. 2019;10:1462. doi:10.3389/fimmu.2019.01462. - Grant Information: 88887.657630/2021-00 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; 303616/2022-9 Conselho Nacional de Desenvolvimento Científico e Tecnológico; 311179/2016-9 Conselho Nacional de Desenvolvimento Científico e Tecnológico; 69-0029 Von-Behring-Röntgen-Stiftung; 2021/04746-3 Fundação de Amparo à Pesquisa do Estado de São Paulo; 2021/06718-7 Fundação de Amparo à Pesquisa do Estado de São Paulo; GRK 1871/2 Deutsche Forschungsgemeinschaft
- Contributed Indexing: Keywords: AP1; LPS; LTA; NFKB; UPEC; epididymis; immune responses; male fertility
- الرقم المعرف: 0 (Lipopolysaccharides)
56411-57-5 (lipoteichoic acid)
0 (Toll-Like Receptor 4)
0 (Toll-Like Receptor 2)
0 (Teichoic Acids)
0 (Tlr2 protein, mouse)
0 (Tlr4 protein, mouse)
0 (Toll-Like Receptor 6)
0 (Tlr6 protein, mouse)
0 (TNF Receptor-Associated Factor 6)
0 (Myeloid Differentiation Factor 88) - الموضوع: Date Created: 20240318 Date Completed: 20240614 Latest Revision: 20240627
- الموضوع: 20250114
- الرقم المعرف: 10.1111/andr.13630
- الرقم المعرف: 38497291
- المصدر:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login

حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.