Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

The prediction of estimated cerebral perfusion pressure with trans-systolic time in preterm and term infants.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Springer Verlag Country of Publication: Germany NLM ID: 7603873 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1076 (Electronic) Linking ISSN: 03406199 NLM ISO Abbreviation: Eur J Pediatr Subsets: MEDLINE
    • بيانات النشر:
      Publication: Berlin : Springer Verlag
      Original Publication: Berlin, New York, Springer-Verlag.
    • الموضوع:
    • نبذة مختصرة :
      It is important to monitor cerebral perfusion in infants because hypo- and hyperperfusion can contribute to neurological injury. This study aimed to clarify the relationship between trans-systolic time (TST) and critical closing pressure (CrCP) or estimated cerebral perfusion pressure (CPPe) in neonates. Moreover, we aimed to determine the TST values in preterm and term infants with stable cerebral perfusion to clarify normative reference data. This multicentre prospective study included infants with arterial lines admitted to the neonatal intensive care units between December 2021 and August 2023. TST, CrCP, and CPPe were calculated using middle cerebral artery waveforms recorded using transcranial Doppler ultrasonography when clinicians collected arterial blood samples. Three hundred and sixty samples were obtained from 112 infants with a gestational age of 32 (interquartile range, 27-37) weeks and a birth weight of 1481 (956-2355) g. TST was positively correlated with CPPe (r = 0.60, p < 0.001), but not with CrCP (r = 0.08, p = 0.10). The normative reference values of TST in preterm and term infants without samples of hyper- or hypocapnia and/or hyper- or hypotension, which may affect cerebral perfusion, were as follows: ≤ 29 weeks, 0.12 (0.11-0.14) s; 30-36 weeks, 0.14 (0.12-0.15) s; and ≥ 37 weeks, 0.16 (0.14-0.17) s, respectively.  Conclusion: TST in neonates significantly correlated with CPPe, but not with CrCP. TST may be a good predictor of cerebral perfusion and potentially have wider clinical applications. What is Known: • Trans-systolic time (TST) is used in evaluating the effects of increased intracranial pressure on cerebral haemodynamics. However, little is known about the efficacy of TST in predicting neonatal cerebral perfusion pressure. What is New: • This study added evidence that TST correlated with estimated cerebral perfusion pressure, but not with critical closing pressure. Additionally, we showed the normative reference values of the TST in preterm and term infants.
      (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Rhee CJ, da Costa CS, Austin T, Brady KM, Czosnyka M, Lee JK (2018) Neonatal cerebrovascular autoregulation. Pediatr Res 84:602–610. https://doi.org/10.1038/s41390-018-0141-6. (PMID: 10.1038/s41390-018-0141-6301963116422675)
      Burton AC (1951) On the physical equilibrium of small blood vessels. Am J Phys 164:319–329. https://doi.org/10.1152/ajplegacy.1951.164.2.319. (PMID: 10.1152/ajplegacy.1951.164.2.319)
      Varsos GV, Kolias AG, Smielewski P, Brady KM, Garsos VG, Hutchinson PJ, Pickard JD, Czosnyka M (2015) A noninvasive estimation of cerebral perfusion pressure using critical closing pressure. J Neurosurg 123:638–648. https://doi.org/10.3171/2014.10. (PMID: 10.3171/2014.1025574566)
      Rhee CJ, Fraser CD 3rd, Kibler K, Easley RB, Anropolos DB, Czosnyka M, Varsos GV, Smielewski P, Rusin CG, Brady KM, Kaiser JR (2015) Ontogeny of critical closing pressure. Pediatr Res 78:71–75. https://doi.org/10.1038/pr.2015.67. (PMID: 10.1038/pr.2015.6725826118)
      Kim ES, Kaiser JR, Rios DR, Bornemeier RA, Rhee CJ (2020) Cerebral hemodynamics are not affected by the size of the patent ductus arteriosus. Neonatology 117:182–188. https://doi.org/10.1159/000506835. (PMID: 10.1159/00050683532434188)
      Rhee CJ, Kibler KK, Easley RB, Andropoulos DB, Czosnyka M, Smielewski P, Varsos GV, Brady KM, Rusin CG, Fraser CD 3rd, Gauss CH, Williams DK, Kaiser JR (2016) The diastolic closing margin is associated with intraventricular hemorrhage in premature infants. Acta Neurochir Suppl 122:147–150. https://doi.org/10.1007/978-3-319-22533-3_30. (PMID: 10.1007/978-3-319-22533-3_3027165896)
      Hanlo PW, Peters RJ, Gooskens RH, Heethaar RM, Keunen RW, van Huffelen AC, Tulleken CA, Willemse J (1995) Monitoring intracranial dynamics by transcranial Doppler–a new Doppler index: trans systolic time. Ultrasound Med Biol 21:613–621. https://doi.org/10.1016/0301-5629(94)00147-6. (PMID: 10.1016/0301-5629(94)00147-68525552)
      Jarmund AH, Pedersen SA, Torp H, Dudink J, Nyrnes SA (2023) A scoping review of cerebral Doppler arterial waveforms in infants. Ultrasound Med Biol 49:919–936. https://doi.org/10.1016/j.ultrasmedbio.2022.12.007. (PMID: 10.1016/j.ultrasmedbio.2022.12.00736732150)
      Parry G, Tucker J, Tarnow-Mordi W, UK Neonatal Staffing Study Collaborative Group (2003) CRIBII: an update of the clnical risk index for babies score. Lancet 36:1789–1791. https://doi.org/10.1016/S0140-6736(03)13397-1. (PMID: 10.1016/S0140-6736(03)13397-1)
      Schmidt EA, Czosnyka M, Gooskens I, Piechnik SK, Matta BF, Whitfield PC, Pickard JD (2001) Preliminary experience of the estimation of cerebral perfusion pressure using transcranial Doppler ultrasonography. J Neurol Neurosurg Psychiatry 70:198–204. https://doi.org/10.1136/jnnp.70.2.198. (PMID: 10.1136/jnnp.70.2.198111604681737197)
      Smielewski P, Czosnyka M, Kirkpatrick P, McEroy H, Rutkowska H, Pickard JD (1996) Assessment of cerebral autoregulation using carotid artery compression. Stroke 27:2197203. https://doi.org/10.1161/01.str.27.12.2197. (PMID: 10.1161/01.str.27.12.2197)
      Panerai RB, Kelsall AW, Rennie JM, Evans DH (1995) Estimation of critical closing pressure in the cerebral circulation of newborns. Neuropediatrics 26:168–173. https://doi.org/10.1055/s-2007-979748. (PMID: 10.1055/s-2007-9797487477756)
      Brian JE Jr (1998) Carbon dioxide and the cerebral circulation. Anesthesiology 88:1365–1386. https://doi.org/10.1097/00000542-199805000-00029. (PMID: 10.1097/00000542-199805000-000299605698)
      Cold GE (1990) Cerebral blood flow in acute head injury. The regulation of cerebral blood flow and metabolism during the acute phase of head injury, and its significance for therapy. Acta Neurochir Suppl (Wien) 49:1–64. (PMID: 2275429)
      Liu J, Li J, Qin GL, Chen YH, Wang Q (2008) Periventricular leukomalacia in premature infants in mainland China. Am J Perinatol 25:535–540. https://doi.org/10.1055/s-0028-1083841. (PMID: 10.1055/s-0028-108384118843588)
      Zayek MM, Alrifai W, Whitehurst RM Jr, Kua KL, Martino A, Eyal FG (2014) Acidemia versus hypercapnia and risk for severe intraventricular hemorrhage. Am J Perinatol 31:345–352. https://doi.org/10.1055/s-0033-1349896. (PMID: 10.1055/s-0033-134989623873117)
      Dionne JM, Cl A, Flynn JT (2012) Hypertension in infancy: diagnosis, management and outcome. Pediatr Nephrol 27:17–32. https://doi.org/10.1007/s00467-010-1755-z. (PMID: 10.1007/s00467-010-1755-z21258818)
      Mostbeck GH, Gossinger HF, Mallek R, Siostrzonek P, Schneider B, Tscholakoff D (1990) Effect of heart rate on Doppler measurements of resistive index in renal arteries. Radiology 175:511–513. https://doi.org/10.1148/radiology.175.2.2183288. (PMID: 10.1148/radiology.175.2.21832882183288)
      Baranger J, Villemain O, Wagner M, Vargas-Gutierrez M, Seed M, Baud O, Ertl-Wagner B, Aguet J (2021) Brain perfusion imaging in neonates. Neuroimage Clin 31:102756. https://doi.org/10.1016/j.nicl.2021.102756. (PMID: 10.1016/j.nicl.2021.102756342984758319803)
      Spaeder MC, Surma VJ (2021) Cerebral regional oxygen saturation variability in neonates following cardiac surgery. Pediatr Res 90:815–818. https://doi.org/10.1038/s41390-020-01171-1. (PMID: 10.1038/s41390-020-01171-132967003)
      Pereira SS, Sinha AK, Shah DK, Kempley ST (2021) Common carotid artery blood flow volume in extremely preterm infants. Acta Paediatr 110:1157–1165. https://doi.org/10.1111/apa.15655. (PMID: 10.1111/apa.1565533145798)
      Sinha AK, Cane C, Kempley ST (2006) Blood flow in the common carotid artery in term and preterm infants: reproducibility and relation to cardiac output. Arch Dis Child Fetal Neonatal Ed 91:F31–F35. https://doi.org/10.1136/adc.2004.058172. (PMID: 10.1136/adc.2004.058172163713902672646)
      Dempsey EM, Barrington KJ (2006) Diagnostic criteria and therapeutic interventions for the hypotensive very low birth weight infant. J Perinatol 26:677–681. https://doi.org/10.1038/sj.jp.7211579. (PMID: 10.1038/sj.jp.721157916929346)
      Levene M, Chiswick M, Field D, Forsyth S, Gamsu H, Grant A (1992) Development of audit measures and guidelines for good practice in the management of neonatal respiratory distress syndrome. Report of a Joint Working Group of the British Association of Perinatal Medicine and the Research Unit of the Royal College of Physicians. Arch Dis Child 67:1221–1227. https://doi.org/10.1136/adc.67.10_spec_no.1221. (PMID: 10.1136/adc.67.10_spec_no.1221)
      Michel E, Hillebrand S, vonTwickel J, Zernikow B, Jorch G (1997) Frequency dependence of cerebrovascular impedance in preterm neonates: a different view on critical closing pressure. J Cereb Blood Flow Metab 17:1127–1131. https://doi.org/10.1097/00004647-199710000-00015. (PMID: 10.1097/00004647-199710000-000159346438)
      Varsos GV, Richards H, Kasprowicz M, Budohoski KP, Brady KM, Reinhard M, Avolio A, Smielewski P, Pickard JD, Czosnyka M (2013) Critical closing pressure determined with a model of cerebrovascular impedance. J Cereb Blood Flow Metab 33:235–243. https://doi.org/10.1038/jcbfm.2012.161. (PMID: 10.1038/jcbfm.2012.16123149558)
      Robba C, Poole D, McNett M et al (2020) Mechanical ventilation in patients with acute brain injury: recommendations of the European Society of Intensive Care Medicine consensus. Intensive Care Med 46:2397–2410. https://doi.org/10.1007/s00134-020-06283-0. (PMID: 10.1007/s00134-020-06283-0331752767655906)
      Robba C, Ball L, Nogas S, Battaglini D, Messina A, Brunetti L, Minetti G, Castellan L, Rocco PRM, Pelosi P (2021) Effects of positive end-expiratory pressure on lung recruitment, respiratory mechanics, and intracranial pressure in mechanically ventilated brain-injured patients. Front Physiol 12:711273. https://doi.org/10.3389/fphys.2021.711273. (PMID: 10.3389/fphys.2021.711273347331738558243)
      Roberts DJ, Hall RI, Kramer AH, Robertson HL, Gallagher CN, Zygun DA (2011) Sedation for critically ill adults with severe traumatic brain injury: a systematic review of randomized controlled trials. Crit Care Med 39:2743–2751. https://doi.org/10.1097/CCM.0b013e318228236f. (PMID: 10.1097/CCM.0b013e318228236f22094498)
      Pfister D, Strebel SP, Steiner LA (2008) Effects of catecholamines on cerebral blood vessels in patients with traumatic brain injury. Eur J Anaesthesiol Suppl 42:98–103. https://doi.org/10.1017/S0265021507003407. (PMID: 10.1017/S026502150700340718289425)
    • Grant Information:
      23K14985 Japan Society for the Promotion of Science
    • Contributed Indexing:
      Keywords: Critical closing pressure; Estimated cerebral perfusion pressure; Neonates; Trans-systolic time
    • الموضوع:
      Date Created: 20240315 Date Completed: 20240516 Latest Revision: 20241104
    • الموضوع:
      20250114
    • الرقم المعرف:
      10.1007/s00431-024-05511-9
    • الرقم المعرف:
      38488878