Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Analysis and evaluation of explainable artificial intelligence on suicide risk assessment.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      This study explores the effectiveness of Explainable Artificial Intelligence (XAI) for predicting suicide risk from medical tabular data. Given the common challenge of limited datasets in health-related Machine Learning (ML) applications, we use data augmentation in tandem with ML to enhance the identification of individuals at high risk of suicide. We use SHapley Additive exPlanations (SHAP) for XAI and traditional correlation analysis to rank feature importance, pinpointing primary factors influencing suicide risk and preventive measures. Experimental results show the Random Forest (RF) model is excelling in accuracy, F1 score, and AUC (>97% across metrics). According to SHAP, anger issues, depression, and social isolation emerge as top predictors of suicide risk, while individuals with high incomes, esteemed professions, and higher education present the lowest risk. Our findings underscore the effectiveness of ML and XAI in suicide risk assessment, offering valuable insights for psychiatrists and facilitating informed clinical decisions.
      (© 2024. Crown.)
    • References:
      Front Psychiatry. 2023 Sep 26;14:1216791. (PMID: 37822798)
      Medicine (Baltimore). 2023 Jul 14;102(28):e34285. (PMID: 37443501)
      Psychol Med. 2023 May;53(7):2982-2991. (PMID: 34879890)
      Int J Environ Res Public Health. 2021 Mar 24;18(7):. (PMID: 33804879)
      Sci Rep. 2022 Oct 17;12(1):17377. (PMID: 36253452)
      J Affect Disord. 2020 Mar 15;265:570-578. (PMID: 31786028)
      Eur Child Adolesc Psychiatry. 2022 Jul;31(7):1-11. (PMID: 33723648)
      Int J Methods Psychiatr Res. 2021 Mar;30(1):e1863. (PMID: 33166430)
      Sci Rep. 2021 Apr 7;11(1):7567. (PMID: 33828178)
      IEEE Trans Biomed Eng. 2022 Oct;69(10):3064-3073. (PMID: 35320080)
      PLoS One. 2021 May 4;16(5):e0250842. (PMID: 33945572)
      Artif Intell Med. 2022 Oct;132:102395. (PMID: 36207078)
      Front Psychiatry. 2017 Sep 29;8:192. (PMID: 29038651)
      Psychiatry Investig. 2019 Aug;16(8):588-593. (PMID: 31446686)
      Br J Psychiatry. 2017 Jun;210(6):387-395. (PMID: 28302700)
      Transl Psychiatry. 2020 Nov 26;10(1):413. (PMID: 33243979)
      Sci Rep. 2022 Sep 7;12(1):15146. (PMID: 36071081)
      J Affect Disord. 2020 Aug 1;273:18-23. (PMID: 32421600)
      Pediatr Res. 2022 Jul;92(1):322-330. (PMID: 34580427)
      Sci Rep. 2023 Jul 16;13(1):11473. (PMID: 37455290)
      Int J Environ Res Public Health. 2020 Nov 05;17(21):. (PMID: 33167554)
      Comput Math Methods Med. 2016;2016:8708434. (PMID: 27752278)
      Diagnostics (Basel). 2023 Jun 05;13(11):. (PMID: 37296828)
      Behav Sci Law. 2019 May;37(3):214-222. (PMID: 30609102)
      JAMA Psychiatry. 2019 Jun 1;76(6):642-651. (PMID: 30865249)
      Int J Environ Res Public Health. 2020 Aug 15;17(16):. (PMID: 32824149)
    • الموضوع:
      Date Created: 20240315 Date Completed: 20240318 Latest Revision: 20240318
    • الموضوع:
      20240318
    • الرقم المعرف:
      PMC10940617
    • الرقم المعرف:
      10.1038/s41598-024-53426-0
    • الرقم المعرف:
      38485985