Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Clinical features and associated factors of coexisting intracerebral hemorrhage in patients with cerebral small vessel disease: a cross-sectional study.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      Intracerebral hemorrhage (ICH) is generally considered to be closely related to cerebral small vessel disease (CSVD), leading to a poor prognosis. However, the coexistence of ICH in general CSVD patients and related factors remain underreported. In our cross-sectional study, we screened 414 CSVD patients from a database at the Department of Neurology, First Affiliated Hospital of Zhengzhou University (September 2018 to April 2022). Imaging biomarkers of CSVD and coexisting ICH lesion were assessed. Factors associated with coexisting ICH in CSVD were determined using multivariate logistic regression analysis. ICH was observed in 59 patients (14.3%). Multivariate logistic regression showed that previous history of ischemic stroke or transient ischemic attack (OR 5.189, 95%CI 2.572-10.467, P < 0.001), high-grade perivascular space in the basal ganglia (n > 10) (OR 2.051, 95%CI 1.044-4.027, P = 0.037) and low adjusted calcium-phosphorus product (OR 0.728 per 1 [mmol/L] 2 increase, 95%CI 0.531-0.998, P = 0.049) were associated with coexisting ICH in CSVD patients. The considerable proportion of coexisting ICH and revelation of associated factors in general CSVD patients alert physicians of the potential risk of the reoccurrence of ICH, and might have a significant impact on therapeutic strategies.
      (© 2024. The Author(s).)
    • References:
      Litak, J. et al. Cerebral small vessel disease. Int. J. Mol. Sci. 21(24), 1711–1722 (2020). (PMID: 10.3390/ijms21249729)
      Wardlaw, J. M. et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 12(8), 822–838 (2013). (PMID: 23867200371443710.1016/S1474-4422(13)70124-8)
      Lioutas, V. A. et al. Lacunar infarcts and intracerebral hemorrhage differences: A nested case-control analysis in the FHS (Framingham heart study). Stroke 48(2), 486–489 (2017). (PMID: 2800809110.1161/STROKEAHA.116.014839)
      Best, J. G., Jesuthasan, A. & Werring, D. J. Cerebral small vessel disease and intracranial bleeding risk: Prognostic and practical significance. Int. J. Stroke Off. J. Int. Stroke Soc. 18(1), 44–52 (2022). (PMID: 10.1177/17474930221106014)
      Am, N. Intracranial hemorrhage. Am. J. Respir. Crit. Care Med. 184(9), 998–1006 (2011). (PMID: 10.1164/rccm.201103-0475CI)
      Choi, J. C., Kang, S. Y., Kang, J. H. & Park, J. K. Intracerebral hemorrhages in CADASIL. Neurology 67(11), 2042–2044 (2006). (PMID: 1713556810.1212/01.wnl.0000246601.70918.06)
      Lai, Q. L. et al. Occurrence of intracranial hemorrhage and associated risk factors in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: A systematic review and meta-analysis. J. Clin. Neurol. 18(5), 499–506 (2022). (PMID: 36062766944456310.3988/jcn.2022.18.5.499)
      Liao, Y. C. et al. Intracerebral hemorrhage in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: Prevalence, clinical and neuroimaging features and risk factors. Stroke 52(3), 985–993 (2021). (PMID: 3353578010.1161/STROKEAHA.120.030664)
      Cho, A. H. et al. Hemorrhagic focus within the recent small subcortical infarcts on long-term follow-up magnetic resonance imaging. Stroke 53(4), e139–e140 (2022). (PMID: 3523608710.1161/STROKEAHA.121.037939)
      Lv, W., Cui, C., Wang, Z., Jiang, J. & Deng, B. A high serum phosphate and calcium-phosphate product is associated with cerebral small vascular disease in patients with stroke: A real-world study. Front. Nutr. 9, 801667 (2022). (PMID: 35445062901377010.3389/fnut.2022.801667)
      Charidimou, A. et al. Cortical superficial siderosis: Detection and clinical significance in cerebral amyloid angiopathy and related conditions. Brain 138(Pt 8), 2126–2139 (2015). (PMID: 2611567510.1093/brain/awv162)
      Chen, X. et al. Cerebral small vessel disease: Neuroimaging markers and clinical implication. J. Neurol. 266(10), 2347–2362 (2019). (PMID: 3029142410.1007/s00415-018-9077-3)
      Xu, Z. et al. New insights in addressing cerebral small vessel disease: Association with the deep medullary veins. Front. Aging Neurosci. 12, 597799 (2020). (PMID: 33335483773610710.3389/fnagi.2020.597799)
      Xu, M. et al. Total burden of cerebral small vessel disease in recurrent ICH versus first-ever ICH. Aging Dis. 10(3), 570–577 (2019). (PMID: 31165001653821310.14336/AD.2018.0804)
      Chen, X. et al. Decreased visible deep medullary veins is a novel imaging marker for cerebral small vessel disease. Neurol. Sci. 41(6), 1497–1506 (2020). (PMID: 3195535010.1007/s10072-019-04203-9)
      Charidimou, A. et al. The Boston criteria version 2.0 for cerebral amyloid angiopathy: A multicentre, retrospective, MRI-neuropathology diagnostic accuracy study. Lancet Neurol. 21(8), 714–25 (2022). (PMID: 35841910938945210.1016/S1474-4422(22)00208-3)
      Auger, C. A., Perosa, V., Greenberg, S. M., van Veluw, S. J. & Kozberg, M. G. Cortical superficial siderosis is associated with reactive astrogliosis in cerebral amyloid angiopathy. J Neuroinflamm. 20(1), 195 (2023). (PMID: 10.1186/s12974-023-02872-0)
      Charidimou, A. et al. Cortical superficial siderosis and first-ever cerebral hemorrhage in cerebral amyloid angiopathy. Neurology 88(17), 1607–1614 (2017). (PMID: 28356458540576410.1212/WNL.0000000000003866)
      Charidimou, A. et al. Cortical superficial siderosis and intracerebral hemorrhage risk in cerebral amyloid angiopathy. Neurology 81(19), 1666–1673 (2013). (PMID: 24107862381210110.1212/01.wnl.0000435298.80023.7a)
      Rastogi, V. et al. Recurrence of lobar hemorrhage: A red flag for cerebral amyloid angiopathy-related inflammation?. Innov. Clin. Neurosci. 12(5–6), 20–26 (2015). (PMID: 261553744479360)
      Pinho, J. et al. Intracerebral hemorrhage recurrence in patients with and without cerebral amyloid angiopathy. Cerebrovasc. Dis. Extra 11(1), 15–21 (2021). (PMID: 33503633798976910.1159/000513503)
      Li, L. & Murthy, S. B. Cardiovascular events after intracerebral hemorrhage. Stroke 53(7), 2131–2141 (2022). (PMID: 35674043924701910.1161/STROKEAHA.122.036884)
      Toffali, M. et al. Secondary prevention after intracerebral haemorrhage. Eur. J. Clin. Invest. 53(6), e13962 (2023). (PMID: 3672190010.1111/eci.13962)
      Okada, H., Horibe, H., Yoshiyuki, O., Hayakawa, N. & Aoki, N. A prospective study of cerebrovascular disease in Japanese rural communities, Akabane and Asahi. Part 1: Evaluation of risk factors in the occurrence of cerebral hemorrhage and thrombosis. Stroke 7(6), 599–607 (1976). (PMID: 100673610.1161/01.STR.7.6.599)
      Aguilar, M. I. & Brott, T. G. Update in intracerebral hemorrhage. The Neurohospitalist 1(3), 148–159 (2011). (PMID: 23983850372613210.1177/1941875211409050)
      Liu, Q., Yang, Y. & Fan, X. Microvascular pericytes in brain-associated vascular disease. Biomed. Pharmacother. Biomed. Pharmacother. 121, 109633 (2020). (PMID: 3174387610.1016/j.biopha.2019.109633)
      Park, Y. S., Chung, M. S. & Choi, B. S. MRI assessment of cerebral small vessel disease in patients with spontaneous intracerebral hemorrhage. Yonsei Med. J. 60(8), 774–781 (2019). (PMID: 31347333666043810.3349/ymj.2019.60.8.774)
      Best, J. G. et al. Association of enlarged perivascular spaces and anticoagulant-related intracranial hemorrhage. Neurology 95(16), e2192–e2199 (2020). (PMID: 32934168771379010.1212/WNL.0000000000010788)
      Charidimou, A. et al. MRI-visible perivascular spaces in cerebral amyloid angiopathy and hypertensive arteriopathy. Neurology 88(12), 1157–1164 (2017). (PMID: 28228568537378210.1212/WNL.0000000000003746)
      Wang, X., Feng, H., Wang, Y., Zhou, J. & Zhao, X. Enlarged perivascular spaces and cerebral small vessel disease in spontaneous intracerebral hemorrhage patients. Front. Neurol. 10, 881 (2019). (PMID: 31474932670226910.3389/fneur.2019.00881)
      Fandler-Höfler, S. et al. Association of the presence and pattern of MRI markers of cerebral small vessel disease with recurrent intracerebral hemorrhage. Neurology 101(8), e794–e804 (2023). (PMID: 373491111044943810.1212/WNL.0000000000207510)
      Anser, F., Dhrolia, M., Nasir, K., Qureshi, R. & Ahmad, A. Co-relation between calcium-phosphorus product and hypertension in end-stage renal disease patients. Cureus 13(10), e18885 (2021). (PMID: 348202148600394)
      Guo, Y. et al. Lower serum calcium level is associated with hemorrhagic transformation after thrombolysis. Stroke 46(5), 1359–1361 (2015). (PMID: 25813194441487510.1161/STROKEAHA.115.008992)
      Liu, J. et al. A cohort study of relationship between serum calcium levels and cerebral microbleeds (CMBs) in ischemic stroke patients with AF and/or RHD. Medicine (Baltimore) 95(26), e4033 (2016). (PMID: 2736802710.1097/MD.0000000000004033)
      Alberts, M. J. & Sarode, R. Association between serum calcium level and the size and expansion of intracerebral hemorrhage. JAMA Neurology 73(11), 1276–1277 (2016). (PMID: 2759843910.1001/jamaneurol.2016.3070)
      Wellman, G. C. et al. Ca2+ sparks and their function in human cerebral arteries. Stroke 33(3), 802–808 (2002). (PMID: 1187290710.1161/hs0302.104089)
      Morotti, A. et al. Association between serum calcium level and extent of bleeding in patients with intracerebral hemorrhage. JAMA Neurology 73(11), 1285–1290 (2016). (PMID: 27598746528771610.1001/jamaneurol.2016.2252)
      Tu, L. et al. Admission serum calcium level as a prognostic marker for intracerebral hemorrhage. Neurocrit. Care 30(1), 81–87 (2019). (PMID: 2999518510.1007/s12028-018-0574-0)
      Stefanini, M. Studies on the role of calcium in the coagulation of blood. Acta Med. Scand. 136(4), 250–266 (1950). (PMID: 1541058910.1111/j.0954-6820.1950.tb09637.x)
      Ho, K. M. & Yip, C. B. Concentration-dependent effect of hypocalcaemia on in vitro clot strength in patients at risk of bleeding: A retrospective cohort study. Transfus. Med. 26(1), 57–62 (2016). (PMID: 2672937110.1111/tme.12272)
      Fukuda, T. et al. Effect of whole blood clotting time in rats with ionized hypocalcemia induced by rapid intravenous citrate infusion. J. Toxicol. Sci. 31(3), 229–234 (2006). (PMID: 1696043310.2131/jts.31.229)
      White, B. C., Wiegenstein, J. G. & Winegar, C. D. Brain ischemic anoxia. Mechanisms of injury. Jama 251(12), 1586–1590 (1984). (PMID: 636626810.1001/jama.1984.03340360052029)
      Borah, M., Dhar, S., Gogoi, D. M. & Ruram, A. A. Association of serum calcium levels with infarct size in acute ischemic stroke: Observations from Northeast India. J. Neurosci. Rural Pract. 7(Suppl 1), S41–S45 (2016). (PMID: 281635025244059)
      Yang, H., Curinga, G. & Giachelli, C. M. Elevated extracellular calcium levels induce smooth muscle cell matrix mineralization in vitro. Kidney Int. 66(6), 2293–2299 (2004). (PMID: 1556931810.1111/j.1523-1755.2004.66015.x)
    • Grant Information:
      2020-PT310-01 the Non-profit Central Research Institute and Major Science; 201300310300 Technology Projects of Henan Province in 2020
    • Contributed Indexing:
      Keywords: Calcium; Cerebral small vessel disease; Intracerebral hemorrhage; Phosphorus
    • الموضوع:
      Date Created: 20240307 Date Completed: 20240311 Latest Revision: 20240311
    • الموضوع:
      20240311
    • الرقم المعرف:
      PMC10920749
    • الرقم المعرف:
      10.1038/s41598-024-55968-9
    • الرقم المعرف:
      38454101