Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Identification and neuroprotective properties of NA-184, a calpain-2 inhibitor.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: John Wiley & Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics Country of Publication: United States NLM ID: 101626369 Publication Model: Print Cited Medium: Internet ISSN: 2052-1707 (Electronic) Linking ISSN: 20521707 NLM ISO Abbreviation: Pharmacol Res Perspect Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: [Hoboken, NJ] : John Wiley & Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics, [2013]-
    • الموضوع:
    • نبذة مختصرة :
      Our laboratory has shown that calpain-2 activation in the brain following acute injury is directly related to neuronal damage and the long-term functional consequences of the injury, while calpain-1 activation is generally neuroprotective and calpain-1 deletion exacerbates neuronal injury. We have also shown that a relatively selective calpain-2 inhibitor, referred to as C2I, enhanced long-term potentiation and learning and memory, and provided neuroprotection in the controlled cortical impact (CCI) model of traumatic brain injury (TBI) in mice. Using molecular dynamic simulation and Site Identification by Ligand Competitive Saturation (SILCS) software, we generated about 130 analogs of C2I and tested them in a number of in vitro and in vivo assays. These led to the identification of two interesting compounds, NA-112 and NA-184. Further analyses indicated that NA-184, (S)-2-(3-benzylureido)-N-((R,S)-1-((3-chloro-2-methoxybenzyl)amino)-1,2-dioxopentan-3-yl)-4-methylpentanamide, selectively and dose-dependent inhibited calpain-2 activity without evident inhibition of calpain-1 at the tested concentrations in mouse brain tissues and human cell lines. Like NA-112, NA-184 inhibited TBI-induced calpain-2 activation and cell death in mice and rats, both male and females. Pharmacokinetic and pharmacodynamic analyses indicated that NA-184 exhibited properties, including stability in plasma and liver and blood-brain barrier permeability, that make it a good clinical candidate for the treatment of TBI.
      (© 2024 The Authors. Pharmacology Research & Perspectives published by British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics and John Wiley & Sons Ltd.)
    • References:
      Binder S, Corrigan JD, Langlois JA. The public health approach to traumatic brain injury: an overview of CDC's research and programs. J Head Trauma Rehabil. 2005;20(3):189-195.
      Gupta R, Sen N. Traumatic brain injury: a risk factor for neurodegenerative diseases. Rev Neurosci. 2016;27(1):93-100.
      Siedler DG, Chuah MI, Kirkcaldie MT, Vickers JC, King AE. Diffuse axonal injury in brain trauma: insights from alterations in neurofilaments. Front Cell Neurosci. 2014;8:429.
      Vosler PS, Sun D, Wang S, et al. Calcium dysregulation induces apoptosis-inducing factor release: cross-talk between PARP-1- and calpain-signaling pathways. Exp Neurol. 2009;218(2):213-220.
      Yildiz-Unal A, Korulu S, Karabay A. Neuroprotective strategies against calpain-mediated neurodegeneration. Neuropsychiatr Dis Treat. 2015;11:297-310.
      Anagli J, Han Y, Stewart L, et al. A novel calpastatin-based inhibitor improves postischemic neurological recovery. Biochem Biophys Res Commun. 2009;385(1):94-99.
      Koumura A, Nonaka Y, Hyakkoku K, et al. A novel calpain inhibitor, ((1S)-1((((1S)-1-benzyl-3-cyclopropylamino-2,3-di-oxopropyl)amino)carbonyl)-3-methylbutyl) carbamic acid 5-methoxy-3-oxapentyl ester, protects neuronal cells from cerebral ischemia-induced damage in mice. Neuroscience. 2008;157(2):309-318.
      Kobeissy FH, Liu MC, Yang Z, et al. Degradation of betaII-Spectrin protein by Calpain-2 and Caspase-3 under neurotoxic and traumatic brain injury conditions. Mol Neurobiol. 2015;52(1):696-709.
      Liu S, Yin F, Zhang J, Qian Y. The role of calpains in traumatic brain injury. Brain Inj. 2014;28(2):133-137.
      Cagmat EB, Guingab-Cagmat JD, Vakulenko AV, Hayes RL, Anagli J. Potential Use of Calpain Inhibitors as Brain Injury Therapy. Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. F. H. Kobeissy. Boca Raton (FL). 2015.
      Siklos M, BenAissa M, Thatcher GR. Cysteine proteases as therapeutic targets: does selectivity matter? A systematic review of calpain and cathepsin inhibitors. Acta Pharm Sin B. 2015;5(6):506-519.
      Thompson SN, Carrico KM, Mustafa AG, Bains M, Hall ED. A pharmacological analysis of the neuroprotective efficacy of the brain- and cell-permeable calpain inhibitor MDL-28170 in the mouse controlled cortical impact traumatic brain injury model. J Neurotrauma. 2010;27(12):2233-2243.
      Bains M, Cebak JE, Gilmer LK, et al. Pharmacological analysis of the cortical neuronal cytoskeletal protective efficacy of the calpain inhibitor SNJ-1945 in a mouse traumatic brain injury model. J Neurochem. 2013;125(1):125-132.
      Schoch KM, von Reyn CR, Bian J, Telling GC, Meaney DF, Saatman KE. Brain injury-induced proteolysis is reduced in a novel calpastatin-overexpressing transgenic mouse. J Neurochem. 2013;125(6):909-920.
      Donkor IO. Calpain inhibitors: a survey of compounds reported in the patent and scientific literature. Expert Opin Ther Pat. 2011;21(5):601-636.
      Baudry M, Bi X. Calpain-1 and Calpain-2: the Yin and Yang of synaptic plasticity and neurodegeneration. Trends Neurosci. 2016;39(4):235-245.
      Wang Y, Briz V, Chishti A, Bi X, Baudry M. Distinct roles for mu-calpain and m-calpain in synaptic NMDAR-mediated neuroprotection and extrasynaptic NMDAR-mediated neurodegeneration. J Neurosci. 2013;33(48):18880-18892.
      Wang Y, Zhu G, Briz V, Hsu YT, Bi X, Baudry M. A molecular brake controls the magnitude of long-term potentiation. Nat Commun. 2014;5:3051.
      Li Z, Ortega-Vilain AC, Patil GS, et al. Novel peptidyl alpha-keto amide inhibitors of calpains and other cysteine proteases. J Med Chem. 1996;39(20):4089-4098.
      Liu Y, Wang Y, Zhu G, Sun J, Bi X, Baudry M. A calpain-2 selective inhibitor enhances learning & memory by prolonging ERK activation. Neuropharmacology. 2016;105:471-477.
      Wang Y, Lopez D, Davey PG, et al. Calpain-1 and calpain-2 play opposite roles in retinal ganglion cell degeneration induced by retinal ischemia/reperfusion injury. Neurobiol Dis. 2016;93:121-128.
      Wang Y, Liu Y, Lopez D, et al. Protection against TBI-induced neuronal death with post-treatment with a selective Calpain-2 inhibitor in mice. J Neurotrauma. 2018;35(1):105-117.
      Molecular Operating Environment (MOE) v. 2013.08 (Chemical Computing Group Inc., M., QC, Canada). 2016.
      Best RB, Zhu X, Shim J, et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles. J Chem Theory Comput. 2012;8(9):3257-3273.
      Chatterjee P, Botello-Smith WM, Zhang H, et al. Can relative binding free energy predict selectivity of reversible covalent inhibitors? J Am Chem Soc. 2017;139(49):17945-17952.
      Jo S, Kim T, Iyer VG, Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem. 2008;29(11):1859-1865.
      Jorgensen W, Chandrasekhar J, Madura J, Impey R, Klein M. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926-935.
      Phillips JC, Braun R, Wang W, et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26(16):1781-1802.
      Adelman S, Garrison B. Generalized Langevin theory for gas/solid processes: dynamical solid models. J Chem Phys. 1976;65:3751-3761.
      Hess B, Kutzner C, van der Spoel D, Lindahl E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput. 2008;4(3):435-447.
      Sasaki T, Kikuchi T, Yumoto N, Yoshimura N, Murachi T. Comparative specificity and kinetic studies on porcine calpain I and calpain II with naturally occurring peptides and synthetic fluorogenic substrates. J Biol Chem. 1984;259(20):12489-12494.
      Elce JS, Hegadorn C, Gauthier S, Vince JW, Davies PL. Recombinant calpain II: improved expression systems and production of a C105A active-site mutant for crystallography. Protein Eng. 1995;8(8):843-848.
      Simonson L, Baudry M, Siman R, Lynch G. Regional distribution of soluble calcium activated proteinase activity in neonatal and adult rat brain. Brain Res. 1985;327(1-2):153-159.
      Harding JJ. Immune checkpoint blockade in advanced hepatocellular carcinoma: an update and critical review of ongoing clinical trials. Future Oncol. 2018;14(22):2293-2302.
      Alexander SPH, Kelly E, Mathie AA, et al. The concise guide to PHARMACOLOGY 2023/24: introduction and other protein targets. Br J Pharmacol. 2023;180(S2):S1-S22.
      Wang Y, Liu Y, Yahya E, Quach D, Bi X, Baudry M. Calpain-2 activation in mouse hippocampus plays a critical role in seizure-induced neuropathology. Neurobiol Dis. 2021;147:105149.
      Harbeson SL, Abelleira SM, Akiyama A, et al. Stereospecific synthesis of peptidyl alpha-keto amides as inhibitors of calpain. J Med Chem. 1994;37(18):2918-2929.
      Kling A, Jantos K, Mack H, et al. Discovery of novel and highly selective inhibitors of Calpain for the treatment of Alzheimer's disease: 2-(3-phenyl-1H-pyrazol-1-yl)-nicotinamides. J Med Chem. 2017;60(16):7123-7138.
      Wang Y, Liu Y, Bi X, Baudry M. Calpain-1 and Calpain-2 in the brain: new evidence for a critical role of Calpain-2 in neuronal death. Cell. 2020a;9(12), 2698.
      Wang Y, Liu Y, Nham A, et al. Calpain-2 as a therapeutic target in repeated concussion-induced neuropathy and behavioral impairment. Sci Adv. 2020b;6(27), eaba5547e.
      Alluri H, Wiggins-Dohlvik K, Davis ML, Huang JH, Tharakan B. Blood-brain barrier dysfunction following traumatic brain injury. Metab Brain Dis. 2015;30(5):1093-1104.
      Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7(2):27-31.
      Xu J, Wang H, Ding K, et al. Inhibition of cathepsin S produces neuroprotective effects after traumatic brain injury in mice. Mediat Inflamm. 2013;2013:187873.
      Reinheckel T, Deussing J, Roth W, Peters C. Towards specific functions of lysosomal cysteine peptidases: phenotypes of mice deficient for cathepsin B or cathepsin L. Biol Chem. 2001;382(5):735-741.
      Jantos K, Kling A, Mack H, et al. Discovery of ABT-957: 1-Benzyl-5-oxopyrrolidine-2-carboxamides as selective calpain inhibitors with enhanced metabolic stability. Bioorg Med Chem Lett. 2019;29(15):1968-1973.
      Lon HK, Mendonca N, Goss S, et al. Pharmacokinetics, safety, tolerability, and pharmacodynamics of Alicapistat, a selective inhibitor of human Calpains 1 and 2 for the treatment of Alzheimer disease: an overview of phase 1 studies. Clin Pharmacol Drug Dev. 2019;8(3):290-303.
    • Grant Information:
      W81XWH-19-1-0329 Defense Medical Research and Development Program
    • Contributed Indexing:
      Keywords: calpain; epimerization; neurodegeneration; pharmacokinetics; traumatic brain injury
    • الرقم المعرف:
      EC 3.4.22.- (Calpain)
      0 (Neuroprotective Agents)
    • الموضوع:
      Date Created: 20240302 Date Completed: 20240304 Latest Revision: 20240314
    • الموضوع:
      20240315
    • الرقم المعرف:
      PMC10907882
    • الرقم المعرف:
      10.1002/prp2.1181
    • الرقم المعرف:
      38429943