Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

A computational fluid dynamics investigation of endothelial cell damage from glaucoma drainage devices.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      Glaucoma drainage devices (GDDs) are prosthetic-treatment devices for treating primary open-angle glaucoma. Despite their effectiveness in reducing intraocular pressures (IOP), endothelial cell damage (ECD) is a commonly known side-effect. There have been different hypotheses regarding the reasons for ECD with one being an induced increase in shear on the corneal wall. A computational fluid dynamics (CFD) model was used to investigate this hypothesis in silico. The Ahmed Glaucoma Valve (AGV) was selected as the subject of this study using an idealised 3D model of the anterior chamber with insertion angles and positions that are commonly used in clinical practice. It was found that a tube-cornea distance of 1.27 mm or greater does not result in a wall shear stress (WSS) above the limit where ECD could occur. Similarly, a tube-cornea angle of 45° or more was shown to be preferable. It was also found that the ECD region has an irregular shape, and the aqueous humour flow fluctuates at certain insertion angles and positions. This study shows that pathological amounts of WSS may occur as a result of certain GDD placements. Hence, it is imperative to consider the associated fluid force interactions when performing the GDD insertion procedure.
      (© 2024. The Author(s).)
    • References:
      Francis, B. A. et al. Novel glaucoma procedures: A report by the American Academy of Ophthalmology. Ophthalmic Technol. Assess. 118(7), 1466–1480 (2011).
      Vallabh, N. A. et al. Corneal endothelial cell loss in glaucoma and glaucoma surgery and the utility of management with descemet membrane endothelial keratoplasty (DMEK). J. Ophthalmol. https://doi.org/10.1155/2022/1315299 (2022). (PMID: 10.1155/2022/1315299356376829148223)
      Lee, H. M. et al. Relationship between tube parameters and corneal endothelial cell damage after Ahmed glaucoma valve implantation: A comparative study. J. Clin. Med. 9(8), 1–11 (2020). (PMID: 10.3390/jcm9082546)
      Hau, S., Bunce, C. & Barton, K. Corneal endothelial cell loss after Baerveldt glaucoma implant surgery. Ophthalmol. Glaucoma. 4(1), 20–31 (2021). (PMID: 10.1016/j.ogla.2020.06.01232830103)
      Kim, M. S., Kim, K. N. & Kim, C.-S. Changes in corneal endothelial cell after Ahmed glaucoma valve implantation and trabeculectomy: 1-year follow-up. Korean J. Ophthalmol. 30(6), 416–425 (2016). (PMID: 10.3341/kjo.2016.30.6.416279803605156615)
      Koo, E. B. et al. Effect of glaucoma tube shunt parameters on cornea endothelial cells in patients with Ahmed valve implants. Cornea 34(1), 37–41 (2015). (PMID: 10.1097/ICO.000000000000030125393097)
      Tan, A. N. et al. Corneal endothelial cell loss after Baerveldt glaucoma drainage device implantation in the anterior chamber. Acta Ophthalmol. 95(1), 91–96 (2017). (PMID: 10.1111/aos.1316127495264)
      Villamarin, A. S. et al. 3D simulation of the aqueous flow in the human eye. Med. Eng. Phys. 34(10), 1462–1470 (2012). (PMID: 10.1016/j.medengphy.2012.02.00722417975)
      Basson, N., Alimahomed, F., Geoghegan, P. H., Williams S. E. & Ho, W. H. An aqueous humour fluid dynamic study for normal and glaucomatous eye conditions. In 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Glasgow (2022).
      Khairulfuaad, R., Asmuin, N. & Taib, I. Study on aqueous humour hydrodynamics of glaucoma condition using 3D printed model and particle image velocimetry (PIV). J. Adv. Res. Fluid Mech. Therm. Sci. 89(1), 26–41 (2021). (PMID: 10.37934/arfmts.89.1.2641)
      Wang, W., Qian, X., Song, H., Zhang, M. & Liu, Z. Fluid and structure coupling analysis of the interaction between aqueous humour and iris. BioMed. Eng. OnLine. https://doi.org/10.1186/s12938-016-0261-3 (2016). (PMID: 10.1186/s12938-016-0261-3281557265260142)
      Fernández-Vigo, J. I. et al. Computational simulation of aqueous humour dynamics in the presence of a posterior-chamber versus iris-fixed phakic intraocular lens. PLoS ONE. 13(8), e0202128 (2018). (PMID: 10.1371/journal.pone.0202128301027286089426)
      Tang, H., Qin, Z. & Wen, B. Geometric model and numerical study of aqueous humour hydrodynamics in the human eye. Comput. Math. Methods Med. 2022, 1–11 (2022).
      Qin, Z., Meng, L., Yang, F., Zhang, C. & Wen, B. Aqueous humour dynamics in human eyes: A lattice Boltzmann study. Math. Biosci. Eng. 18(5), 5006–5028 (2021). (PMID: 10.3934/mbe.202125534517475)
      Jen, W. W., Ismail, Z. & Fitt, A. Simulation of aqueous humour flow driven by buoyancy effects and flow through pupil aperture during descemet membrane detachment. CFD Lett. 12(4), 12–23 (2020). (PMID: 10.37934/cfdl.12.4.1223)
      Samanta, S., Sinha, M. K., Bhushan, V. & Kumar, P. Modelling of heat transfer in human eye using computational fluid dynamics technique. In 10th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics. Orlando (2014).
      Kudsieh, B. et al. Numerical model to predict and compare the hypotensive efficacy and safety of minimally invasive glaucoma surgery devices. PLos ONE. 15(9), e0239324 (2020). (PMID: 10.1371/journal.pone.0239324329915887523982)
      Vaiciuliene, R., Rylskyte, N., Baguzyte, G. & Jasinskas, V. Risk factors for fluctuations in corneal endothelial cell density (review). Exp. Ther. Med. https://doi.org/10.3892/etm.2021.11052 (2022). (PMID: 10.3892/etm.2021.1105234970352)
      Canning, C. R., Greaney, M. J., Dewynne, J. N. & Fitt, A. D. Fluid flow in the anterior chamber of a human eye. IMA J. Math. Appl. Med. Biol. 19(1), 31–60 (2002). (PMID: 10.1093/imammb/19.1.3112408223)
      Boussinesq, J. Théorie de l'écoulement tourbillonnant et tumultueux des liquides dans les lits rectilignes a grande section. (1897).
      Kaji, Y., Oshika, T., Usui, T. & Sakakibara, J. Effect of shear stress on attachment of corneal endothelial cells in association with corneal endothelial cell loss after laser iridotomy. Cornea 24(1), S55–S58 (2005). (PMID: 10.1097/01.ico.0000178735.27674.5216227825)
      Kim, C.-S., Yim, J. H., Lee, E. K. & Lee, N. H. Changes in corneal endothelial cell density and morphology after Ahmed glaucoma valve implantation during the first year of follow up. Clin. Exp. Ophthalmol. 36(2), 142–147 (2008). (PMID: 10.1111/j.1442-9071.2008.01683.x18352870)
      Zhang, Q. et al. The effect of tube location on corneal endothelial cells in patients with Ahmed glaucoma valve. Am. Acad. Ophthalmol. 128(2), 218–226 (2021).
      Tello, C. et al. Baerveldt glaucoma implant insertion in the posterior chamber sulcus. Br. J. Ophthalmol. 91(6), 739–742 (2007). (PMID: 10.1136/bjo.2006.107839173011211955614)
      Lee, J. S. et al. Long-term intraocular pressure fluctuation is a risk factor for visual field progression in advanced glaucoma. J. Glaucoma. 31(5), 310–316 (2022). (PMID: 10.1097/IJG.000000000000201135283440)
      Caprioli, J. & Coleman, A. L. Intraocular pressure fluctuation a risk factor for visual field progression at low intraocular pressures in the Advanced Glaucoma Intervention Study. Ophthalmology. 115(7), 1123–1129 (2008). (PMID: 10.1016/j.ophtha.2007.10.03118082889)
      Bengtsson, B., Leske, M. C., Hyman, L., Heijl, A., Early Manifest Glaucoma Trial Group. Fluctuation of intraocular pressure and glaucoma progression in the Early Manifest Glaucoma Trial. Ophthalmology. 114(2), 205–209 (2007). (PMID: 10.1016/j.ophtha.2006.07.06017097736)
      Miglior, S. et al. Intercurrent factors associated with the development of open angle glaucoma in the European Glaucoma Prevention Study. Am. J. Ophthalmol. 44(2), 266–275 (2007). (PMID: 10.1016/j.ajo.2007.04.040)
      Katz, J. L. & Myers, J. S. Smoothing the intraocular pressure roller coast: A new goal?. Am. J. Ophthalmol. 148(2), 177–178 (2009). (PMID: 10.1016/j.ajo.2009.03.033)
      Tan, S. et al. Association of ultra-short-term intraocular pressure fluctuation with disease progression in primary angle closure glaucoma: The CUPAL Study. J. Glaucoma. 31(11), 874–880 (2022). (PMID: 10.1097/IJG.000000000000210335980863)
      Choudhari, N. S. et al. Is Ahmed glaucoma valve consistent in performance?. Transl. Vis. Sci. Technol. 7, 19 (2018). (PMID: 10.1167/tvst.7.3.19299464936016431)
      Nouri-Mahdavi, K. & Caprioli, J. Evaluation of the hypertensive phase after insertion of the Ahmed Glaucoma Valve. Am. J. Ophthalmol. 136(6), 1001–1008 (2003). (PMID: 10.1016/S0002-9394(03)00630-514644209)
    • الموضوع:
      Date Created: 20240214 Date Completed: 20240216 Latest Revision: 20240218
    • الموضوع:
      20240219
    • الرقم المعرف:
      PMC10866882
    • الرقم المعرف:
      10.1038/s41598-023-50491-9
    • الرقم المعرف:
      38355702