Item request has been placed!
×
Item request cannot be made.
×

Enzymes for dermatological use.
Item request has been placed!
×
Item request cannot be made.
×

- المؤلفون: Nascimento NS;Nascimento NS; Torres-Obreque KM; Torres-Obreque KM; Oliveira CA; Oliveira CA; Rabelo J; Rabelo J; Baby AR; Baby AR; Long PF; Long PF; Young AR; Young AR; Rangel-Yagui CO; Rangel-Yagui CO; Rangel-Yagui CO
- المصدر:
Experimental dermatology [Exp Dermatol] 2024 Jan; Vol. 33 (1), pp. e15008.- نوع النشر :
Journal Article; Review- اللغة:
English - المصدر:
- معلومة اضافية
- المصدر: Publisher: Munksgaard Country of Publication: Denmark NLM ID: 9301549 Publication Model: Print Cited Medium: Internet ISSN: 1600-0625 (Electronic) Linking ISSN: 09066705 NLM ISO Abbreviation: Exp Dermatol Subsets: MEDLINE
- بيانات النشر: Original Publication: Copenhagen : Munksgaard, c1992-
- الموضوع:
- نبذة مختصرة : Skin is the ultimate barrier between body and environment and prevents water loss and penetration of pathogens and toxins. Internal and external stressors, such as ultraviolet radiation (UVR), can damage skin integrity and lead to disorders. Therefore, skin health and skin ageing are important concerns and increased research from cosmetic and pharmaceutical sectors aims to improve skin conditions and provide new anti-ageing treatments. Biomolecules, compared to low molecular weight drugs and cosmetic ingredients, can offer high levels of specificity. Topically applied enzymes have been investigated to treat the adverse effects of sunlight, pollution and other external agents. Enzymes, with a diverse range of targets, present potential for dermatological use such as antioxidant enzymes, proteases and repairing enzymes. In this review, we discuss enzymes for dermatological applications and the challenges associated in this growing field.
(© 2024 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.) - References: Powell J. Skin physiology. Women's Health Med. 2006;3(3):130-133.
Narasimha Murthy S, Shivakumar HN. Topical and transdermal drug delivery. In: Kulkarni VS, ed. Handbook of Non-Invasive Drug Delivery Systems. Elsevier; 2010:1-36. doi:10.1016/b978-0-8155-2025-2.10001-0.
US FOOD AND DRUG ADMINISTRATION. Is it a cosmetic, a drug, or both? (or is it soap?). 2021. Accessed August 23, 2022 https://www.fda.gov/cosmetics/cosmetics-laws-regulations/it-cosmetic-drug-or-both-or-it-soap.
Amer M, Maged M. Cosmeceuticals versus pharmaceuticals. Clin Dermatol. 2009;27(5):428-430. doi:10.1016/j.clindermatol.2009.05.004.
Draelos ZD. Cosmeceuticals: undefined, unclassified, and unregulated. Clin Dermatol. 2009;27(5):431-434. doi:10.1016/j.clindermatol.2009.05.005.
Zappelli C, Barbulova A, Apone F, Colucci G. Effective active ingredients obtained through biotechnology. Cosmetics. 2016;3(4):39. doi:10.3390/cosmetics3040039.
Pandey A, Gurpoonam KJ, Sonthalia S. Cosmeceuticals. NCBI Bookshelf. StatPearls Publishing LLC; 2022. Accessed October 19, 2022. https://www.ncbi.nlm.nih.gov/books/NBK544223/.
BRASIL. Farmacopeia Brasileira. 6th ed. Ministério da Saúde; 2019.
Thakker K, Klein R. Drug release: topical products. In: Riley CM, Rosanske TW, Reid G, eds. Specification of Drug Substances and Products: Development and Validation of Analytical Methods. 2ed ed. Elsevier; 2020:505-534. doi:10.1016/B978-0-08-102824-7.00019-1.
Natarajan VT, Ganju P, Ramkumar A, Grover R, Gokhale RS. Multifaceted pathways protect human skin from UV radiation. Nat Chem Biol. 2014;10(7):542-551. doi:10.1038/nchembio.1548.
Sunar K, Kumar U, Deshmukh SK. Recent applications of enzymes in personal care products. In: Dhillon GS, Kaur S, eds. Agro-Industrial Wastes as Feedstock for Enzyme Production: Apply and Exploit the Emerging and Valuable Use Options of Waste Biomass. Elsevier Inc.; 2016:279-298. doi:10.1016/B978-0-12-802392-1.00012-5.
Eibenschutz L, Silipo V, de Simone P, et al. A 9-month, randomized, assessor-blinded, parallel-group study to evaluate clinical effects of film-forming medical devices containing photolyase and sun filters in the treatment of field cancerization compared with sunscreen in patients after successful photodynamic therapy for actinic keratosis. British J Dermatol. 2016;175(6):1391-1393. doi:10.1111/bjd.14721.
Grand View Research. Enzymes market size, share & trends analysis report, 2030. 2020. Accessed November 15, 2022 https://www.grandviewresearch.com/industry-analysis/enzymes-industry.
Helger S. Effect of xenogenic repair enzymes on photoimmunology and photocarcinogenesis. J Photochem Photobiol B. 2001;65:105-108. www.elsevier.com/locate/jphotobiol.
Mayo JC, Sainz RM, Antolín I, Herrera F, Martin V, Rodriguez C. Melatonin regulation of antioxidant enzyme. Gene Expr. 2002;59:1706-1713. http://www.scioncorp.com.
Benhar M. Roles of mammalian glutathione peroxidase and thioredoxin reductase enzymes in the cellular response to nitrosative stress. Free Radic Biol Med. 2018;127:160-164. doi:10.1016/j.freeradbiomed.2018.01.028.
Ilyukha VA. Superoxide dismutase and catalase in the organs of mammals of different Ecogenesis. J Evol Biochem Physiol. 2001;37(3):183-186.
Kumar M, Yadav V, Tuteja N, Johri AK. Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. Microbiology (N Y). 2009;155(3):780-790. doi:10.1099/mic.0.019869-0.
Pereira AS, Dorneles AOS, Bernardy K, et al. Selenium and silicon reduce cadmium uptake and mitigate cadmium toxicity in Pfaffia glomerata (Spreng.) Pedersen plants by activation antioxidant enzyme system. Environ Sci Pollut Res. 2018;25(19):18548-18558. doi:10.1007/s11356-018-2005-3.
Akbary P, Aminikhoei Z. Effect of water-soluble polysaccharide extract from the green alga Ulva rigida on growth performance, antioxidant enzyme activity, and immune stimulation of grey mullet Mugil cephalus. J Appl Phycol. 2018;30(2):1345-1353. doi:10.1007/s10811-017-1299-8.
Rezayian M, Niknam V, Ebrahimzadeh H. Oxidative damage and antioxidative system in algae. Toxicol Rep. 2019;6:1309-1313. doi:10.1016/j.toxrep.2019.10.001.
Zhang LB, Feng MG. Antioxidant enzymes and their contributions to biological control potential of fungal insect pathogens. Appl Microbiol Biotechnol. 2018;102(12):4995-5004. doi:10.1007/s00253-018-9033-2.
Zhao JT, Ma DH, Luo M, et al. In vitro antioxidant activities and antioxidant enzyme activities in HepG2 cells and main active compounds of endophytic fungus from pigeon pea [Cajanus cajan (L.) Millsp.]. Food Res Int. 2014;56:243-251. doi:10.1016/j.foodres.2013.12.028.
Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK. Reactive oxygen species in metabolic and inflammatory signaling. Am Heart Assoc. 2018;122:877-901.
Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21(7):363-383. doi:10.1038/s41580-020-0230-3.
Sander CS, Chang H, Salzmann S, et al. Photoaging is associated with protein oxidation in human skin in vivo. J Invest Dermatol. 2002;118(4):618-625.
Reczek CR, Birsoy K, Kong H, et al. A CRISPR screen identifies a pathway required for paraquat-induced cell death. Nat Chem Biol. 2017;13(12):1274-1279. doi:10.1038/nchembio.2499.
Godic A, Poljšak B, Adamic M, Dahmane R. The role of antioxidants in skin cancer prevention and treatment. Oxid Med Cell Longev. 2014;2014:1-6. doi:10.1155/2014/860479.
Dammak I, Bundaya S, Abdallah FB, Turki H, Attia H, Hentati B. Antioxidant Enzymes and Lipid Peroxidation at the Tissue Level in Patients with Stable and Active Vitiligo. 2009.
Feng B, Fang Y, Wei SM. Effect and mechanism of epigallocatechin-3-gallate (EGCG). Against the hydrogen peroxide-induced oxidative damage in human dermal fibroblasts LinkOut-more resources other literature sources the lens-patent citations view PDF. J Cosmet Sci. 2013;64:35-44. https://pubmed.ncbi.nlm.nih.gov/23449129/.
Ferretti G, Bacchetti T, Campanati A, Simonetti O, Liberati G, Offidani A. Correlation between lipoprotein(a) and lipid peroxidation in psoriasis: role of the enzyme paraoxonase-1. British J Dermatol. 2012;166(1):204-207. doi:10.1111/j.1365-2133.2011.10539.x.
Dall'Oglio F, Puviani M, Milani M, Micali G. Efficacy and tolerability of a cream containing modified glutathione (GSH-C4), beta-Glycyrrhetic, and azelaic acids in mild-to-moderate rosacea: a pilot, assessor-blinded, VISIA and ANTERA 3-D analysis, two-center study (the “Rosazel” trial). J Cosmet Dermatol. 2021;20(4):1197-1203. doi:10.1111/jocd.13707.
Adriana C, Budiastuti A, Kabulrachman K, Widayati RI, Riyanto P, Muslimin M. Coenzyme q10 supplementation as an adjuvant therapy potentially increase serum superoxide dismutase levels in acne vulgaris patients. Open access Maced J Med Sci. 2021;9(B):444-450. doi:10.3889/oamjms.2021.6048.
Fridovich I. Biological effects of the superoxide radical. Arch Biochem Biophys. 1986;247:1-11.
McCord JM, Fridovich I. Superoxide dismutase: An enzymatic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244(22):6055. doi:10.1016/S0021-9258(18)63504-5.
Okado-Matsumoto A, Fridovich I. Subcellular distribution of superoxide dismutases (SOD) in rat liver. Cu,Zn-SOD in mitochondria. J Biol Chem. 2001;276(42):38388-38393. doi:10.1074/jbc.M105395200.
Yamakura F, Matsumoto T, Terauchi K. Isolation of mn-SOD and low active fe-SOD from methylomonas j; consisting of identical proteins. Free Radic Res. 1991;12(1):329-334. doi:10.3109/10715769109145802.
Lu X, Wang C, Liu B. The role of Cu/Zn-SOD and Mn-SOD in the immune response to oxidative stress and pathogen challenge in the clam Meretrix meretrix. Fish Shellfish Immunol. 2015;42(1):58-65. doi:10.1016/j.fsi.2014.10.027.
Keller GA, Warner TG, Steimer KS, Hallewell RA. Cu,Zn superoxide dismutase is a peroxisomal enzyme in human fibroblasts and hepatoma cells. Proc Natl Acad Sci U S A. 1991;88(16):7381-7385. doi:10.1073/pnas.88.16.7381.
Marklund SL. Human copper-containing superoxide dismutase of high molecular weight. PNAS. 1982;79(24 I):7634-7638. doi:10.1073/pnas.79.24.7634.
Santos R, Hérouart D, Puppo A, Touati D. Critical protective role of bacterial superoxide dismutase in rhizobium-legume symbiosis. Mol Microbiol. 2000;38(4):750-759. doi:10.1046/j.1365-2958.2000.02178.x.
Crapo JD, Ouryf T, Rabouille C, Slot JW, Chang LY. Copper, zinc superoxide dismutase is primarily a cytosolic protein in human cells (antioxidant enzyme/peroxisome/catalase/immunocytocemistry). PNAS. 1992;89:10405-10409.
Kobayashi T, Saito N, Takemori N, et al. Ultrastructural localization of superoxide dismutasein human skin. Acta Derm Venereol (Stockh). 1993;73:41-45.
Johnson F, Giulivi C. Superoxide dismutases and their impact upon human health. Mol Aspects Med. 2005;26(4-5):340-352. doi:10.1016/j.mam.2005.07.006.
Altobelli GG, Van Noorden S, Cimini V. Copper/zinc-superoxide dismutase in human epidermis: an immunochemical study. Front Med (Lausanne). 2019;6:1-8. doi:10.3389/fmed.2019.00258.
Iuchi Y, Roy D, Okada F, et al. Spontaneous skin damage and delayed wound healing in SOD1-deficient mice. Mol Cell Biochem. 2010;341(1-2):181-194. doi:10.1007/s11010-010-0449-y.
Kim HY, Sah SK, Choi SS, Kim TY. Inhibitory effects of extracellular superoxide dismutase on ultraviolet B-induced melanogenesis in murine skin and melanocytes. Life Sci. 2018;210:201-208. doi:10.1016/j.lfs.2018.08.056.
Hellemans L, Corstjens H, Neven A, Declercq L, Maes D. Antioxidant enzyme activity in human stratum corneum shows seasonal variation with an age-dependent recovery. J Invest Dermatol. 2003;120(3):434-439. doi:10.1046/j.1523-1747.2003.12056.x.
Rhie GE, Shin MH, Seo JY, et al. Aging-and Photoaging-dependent changes of Enzymic and Nonenzymic antioxidants in the epidermis and dermis of human skin in vivo. J Invest Dermatol. 2001;117:1212-1217.
Maresca V, Flori E, Briganti S, et al. UVA-induced modification of catalase charge properties in the epidermis is correlated with the skin phototype. J Invest Dermatol. 2006;126(1):182-190. doi:10.1038/sj.jid.5700021.
Moysan A, Marquis I, Gaboriau F, Santus R, Dubertret L, Morliére P. Ultraviolet A-induced lipid peroxidation and antioxidant defense systems in cultured human skin fibroblasts. J Invest Dermatol. 1993;100(5):692-698. doi:10.1111/1523-1747.ep12472352.
Fuchs J, Huflejt ME, Rothfuss LM, Wilson DS, Carcamo G, Packer L. Impairment of enzymic and nonenzymic antioxidants in skin by UVB irradiation. J Invest Dermatol. 1989;93(6):769-773. doi:10.1111/1523-1747.ep12284412.
Lontz W, Sirsjo A, Liu W, Lindberg M, Rollman O, Torma H. Increased mRNA expression of manganese superoxide dismutase in psoriasis skin lesions and in cultured human keratinocytes exposed to IL-1B and TNF-a. Free Radic Biol Med. 1995;18(2):349-355.
Zhao Y, Xue Y, Oberley TD, et al. Overexpression of manganese superoxide dismutase suppresses tumor formation by modulation of activator Protein-1 signaling in a multistage skin carcinogenesis model 1. Cancer Res. 2001;61:6082-6088.
Bellot GL, Dong X, Lahiri A, et al. MnSOD is implicated in accelerated wound healing upon negative pressure wound therapy (NPWT): a case in point for MnSOD mimetics as adjuvants for wound management. Redox Biol. 2019;20:307-320. doi:10.1016/j.redox.2018.10.014.
Velarde M, Flynn J, Day N, Melov S, Campisi J. Mitochondrial oxidative stress caused by Sod2 deficiency promotes cellular senescence and aging phenotypes in the skin. Aging. 2012;4:3-12.
Abdel Fattah NSA, Shaheen MA, Ebrahim AA, El Okda ES. Tissue and blood superoxide dismutase activities and malondialdehyde levels in different clinical severities of acne vulgaris. Br J Dermatol. 2008;159(5):1086-1091. doi:10.1111/j.1365-2133.2008.08770.x.
Grange PA, Chéreau C, Raingeaud J, et al. Production of superoxide anions by keratinocytes initiates P. Acnes-induced inflammation of the skin. PLoS Pathog. 2009;5(7):e1000527. doi:10.1371/journal.ppat.1000527.
Nguyen CT, Sah SK, Kim TY. Inhibitory effects of superoxide dismutase 3 on Propionibacterium acnes-induced skin inflammation. Sci Rep. 2018;8(1):1-12. doi:10.1038/s41598-018-22132-z.
Jankovic A, Ferreri C, Filipovic M, et al. Targeting the superoxide/nitric oxide ratio by L-arginine and SOD mimic in diabetic rat skin. Free Radic Res. 2016;50:S51-S63. doi:10.1080/10715762.2016.1232483.
Jain A, Mal J, Mehndiratta V, Chander R, Patra SK. Study of oxidative stress in vitiligo. Indian J Clin Bioche. 2011;26(1):78-81. doi:10.1007/s12291-010-0045-7.
Sravani PV, Babu NK, Gopal KVT, et al. Determination of oxidative stress in vitiligo by measuring superoxide dismutase and catalase levels in vitiliginous and non-vitiliginous skin. Indian J Dermatol Venereol Leprol. 2009;75(3):268-271. doi:10.4103/0378-6323.48427.
Jusuf NK, Muis K, Putri KY. Correlation between superoxide dismutase level and disease activity of vitiligo. Bali Medical Journal. 2019;8(1):291. doi:10.15562/bmj.v8i1.1374.
Paramonov BA, Galenko-Yaroshevskii VP, Turkovskii II, et al. Ointments with superoxide dismutase and interleukin-1β: effect on reparative processes and impedance of burn wound. Bull Exp Biol Med. 2005;139(1):64-67.
Vorauer-Uhl K, Fürnschlief E, Wagner A, Ferko B, Katinger H. Reepithelialization of experimental scalds effected by topically applied superoxide dismutase: controlled animal studies. Wound Repair Regen. 2002;10(6):366-371. doi:10.1046/j.1524-475X.2002.t01-1-10605.x.
Paramonov BA, Turkovski II, Doroshkevich OS, Taranova VN, Pomorski KP. Effect of local application of superoxide dismutase on dielectric parameters of cooled skin in rats. Bull Exp Biol Med. 2008;146:588-590.
Dong Y, Zhuang H, Hao Y, et al. Poly(N-isopropyl-acrylamide)/poly(γ-glutamic acid) thermo-sensitive hydrogels loaded with superoxide dismutase for wound dressing application. Int J Nanomedicine. 2020;15:1939-1950. doi:10.2147/IJN.S235609.
Pudlarz AM, Ranoszek-Soliwoda K, Karbownik MS, et al. Antioxidant enzymes immobilized on gold and silver nanoparticles enhance DNA repairing systems of rat skin after exposure to ultraviolet radiation. Nanomedicine. 2022;43:102558. doi:10.1016/j.nano.2022.102558.
Pudlarz AM, Czechowska E, Karbownik SM, et al. The effect of immobilized antioxidant enzymes on the oxidative stress in UV-irradiated rat skin. Nanomedicine. 2020;15(1):23-39. doi:10.2217/nnm-2019-0166.
Stephenie S, Chang YP, Gnanasekaran A, Esa NM, Gnanaraj C. An insight on superoxide dismutase (SOD) from plants for mammalian health enhancement. J Funct Foods. 2020;68:103917. doi:10.1016/j.jff.2020.103917.
Palmieri G, Arciello S, Bimonte M, et al. The extraordinary resistance to UV radiations of a manganese superoxide dismutase of Deinococcus radiodurans offers promising potentialities in skin care applications. J Biotechnol. 2019;302:101-111. doi:10.1016/j.jbiotec.2019.07.002.
Keele BB, McCord JM, Fridovich I. Further characterization of bovine superoxide dismutase and its isolation from bovine heart*. J Biol Chem. 1971;246(9):2875-2880.
Weser U, Prinz R, Schallie A, et al. Microbial and hepatic Cuprein (superoxide dismutase) isolation and characterisation of Cuprein (superoxide dismutase) from Saccharomyces cerevisiae and bovine liver. Hoppe Seylers Z Physiol Chem Bd. 1972;353:1821-1831.
Rigo A, Viglino P, Rotilio G. Kinetic study of O2- dismutation by bovine superoxide dismutase. Evidence for saturation of the catalytic sites by O2-. Biochemical and biophysical research. Communication. 1975;63(4):1013-1018.
Borders CL, Bjerrum MJ, Schirmer MA, Oliver SG. Characterization of recombinant saccharomyces cereVisiae manganese-containing superoxide dismutase and its H30A and K170R mutants expressed in Escherichia coli. Biochemistry. 1990;279:195-201. www.ncbi.nlm.nih.goV.
Klug D, Rabani J, Fridovich I. A direct demonstration of the catalytic action of superoxide dismutase through the use of pulse radiolysis. J Biol Chem. 1972;247(15):4839-4842. doi:10.1016/s0021-9258(19)44987-9.
BRENDA. Information on EC 1.15.1.1-superoxide dismutase-BRENDA Enzyme Database. 2022 https://www.brenda-enzymes.org/enzyme.php?ecno=1.15.1.1#print.
Vainshtein BK, Melik-Adamyan WR, Barynin VV, Vagin AA, Grebenko AI. Three-dimensional structure of the enzyme catalase. Nature. 1981;293:411-412. doi:10.1038/293411a0.
Deisseroth A, Dounce AL. Catalase: physical and chemical properties, mechanism of catalysis, and physiological role. Physiol Rev. 1970;50(3):319-375. doi:10.1152/physrev.1970.50.3.319.
Shahid MN, Amjad M, Ashraf U, Jamal A, Wattoo JI. Computational analysis of catalase from different source organisms. Pak J Bot. 2022;54(1):35. doi:10.30848/pjb2022-1(35).
Shin MH, Rhie GE, Kim YK, et al. H2O2 accumulation by catalase reduction changes MAP kinase signaling in aged human skin in vivo. J Invest Dermato. 2005;125(2):221-229. doi:10.1111/j.0022-202X.2005.23823.x.
Ghosh MK, Hajra AK. A rapid method for the isolation of peroxisomes from rat liver. Anal Biochem. 1986;159(1):169-174. doi:10.1016/0003-2697(86)90323-4.
Kikuchi-torii K, Hayashi S, Nakamoto H, Nakamura S. Properties of aspergillus Niger catalase. J Biochem. 1982;92(5):1449-1456. doi:10.1093/oxfordjournals.jbchem.a134069.
Mosavi-Movahedi AA, Wilkinson AE, Jones MN. Characterization of aspergillus Niger catalase. Int J Biol Macromol. 1987;9:327-332.
Yang HS, Yang HC, Tani Y. Catalase from aspergillus Niger KUF-04. Kor J Appl Microbiol Bioeng. 1988;16(3):193-198.
Jankovic A, Saso L, Korac A, Korac B. Relation of redox and structural alterations of rat skin in the function of chronological aging. Oxid Med Cell Longev. 2019;2019:2471312. doi:10.1155/2019/2471312.
Sullivan NJ, Tober KL, Burns EM, et al. UV light B-mediated inhibition of skin catalase activity promotes gr-1 + CD11b+ myeloid cell expansion. J Invest Dermatol. 2012;132(3):695-702. doi:10.1038/jid.2011.329.
Mao X, Bharti P, Thaivalappil A, Cao K. Peroxisomal abnormalities and catalase deficiency in Hutchinson-Gilford progeria syndrome. Aging. 2020;12(6):5195-5208. doi:10.18632/aging.102941.
Vafaee T, Rokos H, Salem MMAEL, Schallreuter KU. In vivo and in vitro evidence for epidermal H2O2-mediated oxidative stress in piebaldism. Exp Dermatol. 2010;19(10):883-887. doi:10.1111/j.1600-0625.2009.00966.x.
Takahara S. Progressive Oral gangrene probably due to lack of catalase in the blood (Acatalasaemia). report of nine cases. Lancet. 1952;260(6745):1101-1104. doi:10.1016/S0140-6736(52)90939-2.
Fatemi-Naeini F, Vaez-Shooshtari A, Ebrahimi B, Nilforoushzadeh MA, Molaei R. The effect of pseudocatalase/superoxide dismutase in treatment of vitiligo: a pilot study. J Isfahan Med Sch. 2014;31(269):2309-2314. doi:10.4103/2279-042x.108375.
Schallreuter KU, Kothari S, Chavan B, Spencer JD. Regulation of melanogenesis-controversies and new concepts. Exp Dermatol. 2008;17(5):395-404. doi:10.1111/j.1600-0625.2007.00675.x.
Smejkal GB, Kakumanu S. Enzymes and their turnover numbers. Expert Rev Proteomics. 2019;16(7):543-544. doi:10.1080/14789450.2019.1630275.
Oliveira CA, Forster C, Feitosa V, Baby AR, Léo P, Rangel-Yagui CO. Catalase-loaded polymersomes as a promising safe ingredient to active photoprotection. J Photochem Photobiol. 2021;7:100056. doi:10.1016/j.jpap.2021.100056.
Abdel-Mageed HM, El-Laithy HM, Mahran LG, Fahmy AS, Mäder K, Mohamed SA. Development of novel flexible sugar ester vesicles as carrier systems for the antioxidant enzyme catalase for wound healing applications. Process Biochem. 2012;47(7):1155-1162. doi:10.1016/j.procbio.2012.04.008.
Santos JHPM, Oliveira CA, Rocha BM, Carretero G, Rangel-Yagui CO. Pegylated catalase as a potential alternative to treat vitiligo and UV induced skin damage. Bioorg Med Chem. 2021;30:115933. doi:10.1016/j.bmc.2020.115933.
Chae ZH, Chung SJ, Rhee SG. Thioredoxin-dependent peroxide reductase from yeast*. J Biol Chem. 1994;269(44):27670-27678. doi:10.1016/S0021-9258(18)47038-X.
Fisher AB, Vasquez-Medina JP, Dodia C, Sorokina EM, Tao JQ, Feinstein SI. Peroxiredoxin 6 phospholipid hydroperoxidase activity in the repair of peroxidized cell membranes. Redox Biol. 2018;14:41-46. doi:10.1016/j.redox.2017.08.008.
Wang X, Li Q, Mu P, Guan Y, Chen X, Ao J. Large yellow croaker peroxiredoxin IV protect cells against oxidative damage and apoptosis. Mol Immunol. 2020;127:150-156. doi:10.1016/j.molimm.2020.08.019.
Wang L, Li Z, Wang C, Wang D, Wang Y, Lu M. Overexpression of a peroxiredoxin gene from Tamarix hispida, ThPrx1, confers tolerance to oxidative stress in yeast and Arabidopsis. J Plant Biol. 2017;60(6):548-557. doi:10.1007/s12374-017-0187-8.
Zhang L, Tao Y, Zhao S, et al. A novel peroxiredoxin from the antagonistic endophytic bacterium Enterobacter sp. V1 contributes to cotton resistance against Verticillium dahliae. Plant and Soil. 2020;454(1-2):395-409. doi:10.1007/s11104-020-04661-7.
Lee SC, Chae HZ, Lee JE, et al. Peroxiredoxin is ubiquitously expressed in rat skin: isotype-specific expression in the epidermis and hair follicle. J Invest Dermatol. 2000;115(6):1108-1114. doi:10.1046/j.1523-1747.2000.00177.x.
Chae HZ, Kang SW, Rhee SG. Isoforms of mammalian peroxiredoxin that reduce peroxides in presence of thioredoxin. Methods Enzymol. 1988;1999(300):219-226. doi:10.1016/S0076-6879(99)00128-7.
Kim MH, Seong JB, Huh JW, Bae YC, Lee HS, Lee DS. Peroxiredoxin 5 ameliorates obesity-induced non-alcoholic fatty liver disease through the regulation of oxidative stress and AMP-activated protein kinase signaling. Redox Biol. 2020;28:101315. doi:10.1016/j.redox.2019.101315.
Chae HZ, Uhm TB, Rhee SG. Dimerization of thiol-specific antioxidant and the essential role of cysteine 47. PNAS. 1994;91(15):7022-7026. doi:10.1073/pnas.91.15.7022.
Rhee SG, Woo HA, Kil IS, Bae SH. Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. J Biol Chem. 2012;287(7):4403-4410. doi:10.1074/jbc.R111.283432.
Chae HZ, Chung SJ, Rhee SG. Thioredoxin-dependent peroxide reductase from yeast. J Biol Chem. 1994;269(44):27670-27678. doi:10.1016/s0021-9258(18)47038-x.
Lee DU, Park HW, Lee SC. Comparing the stability of retinol in liposomes with cholesterol, β-sitosterol, and stigmasterol. Food Sci Biotechnol. 2021;30(3):389-394. doi:10.1007/s10068-020-00871-y.
Novoselov SV, Peshenko IV, Popov VI, et al. Localization of 28-kDa peroxiredoxin in rat epithelial tissues and its antioxidant properties. Cell Tissue Res. 1999;298(3):471-480. doi:10.1007/s004410050069.
Baek JY, Park S, Park J, et al. Protective role of mitochondrial Peroxiredoxin III against UVB-induced apoptosis of epidermal keratinocytes. J Invest Dermatol. 2017;137(6):1333-1342. doi:10.1016/j.jid.2017.01.027.
Ryu J, Park SG, Park BC, Choe M, Lee KS, Cho JW. Proteomic analysis of psoriatic skin tissue for identification of differentially expressed proteins: up-regulation of GSTP1, SFN and PRDX2 in psoriatic skin. Int J Mol Med. 2011;28(5):785-792. doi:10.3892/ijmm.2011.757.
Jin MH, Yu NN, Jin YH, et al. Peroxiredoxin II with dermal mesenchymal stem cells accelerates wound healing. Aging. 2021;13(10):13926-13940. doi:10.18632/aging.202990.
Han YH, Zhang YQ, Jin MH, et al. Peroxiredoxin I deficiency increases keratinocyte apoptosis in a skin tumor model via the ROS-p38 MAPK pathway. Biochem Biophys Res Commun. 2020;529(3):635-641. doi:10.1016/j.bbrc.2020.06.047.
Rolfs F, Huber M, Gruber F, et al. Dual role of the antioxidant enzyme peroxiredoxin 6 in skin carcinogenesis. Cancer Res. 2013;73(11):3460-3469. doi:10.1158/0008-5472.CAN-12-4369.
Yamaguchi R, Guo X, Zheng J, et al. PRDX4 improved aging-related delayed wound healing in mice. J Invest Dermatol. 2021;141:1-10. doi:10.1016/j.jid.2021.04.015.
Zhang S, Wang W, Gu Q, et al. Protein and miRNA profiling of radiation-induced skin injury in rats: the protective role of peroxiredoxin-6 against ionizing radiation. Free Radic Biol Med. 2014;69:96-107. doi:10.1016/j.freeradbiomed.2014.01.019.
Sharapov MG, Novoselov VI, Ravin VK. The cloning, expression, and comparative analysis of peroxiredoxin 6 from various sources. Mol Biol. 2009;43(3):465-471. doi:10.1134/S0026893309030145.
Seo MS, Kang SW, Kim K, Baines IC, Lee TH, Rhee SG. Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate. J Biol Chem. 2000;275(27):20346-20354. doi:10.1074/jbc.M001943200.
Hugo M, Turell L, Manta B, et al. Thiol and sulfenic acid oxidation of AhpE, the one-cysteine peroxiredoxin from mycobacterium tuberculosis: kinetics, acidity constants, and conformational dynamics. Biochemistry. 2009;48(40):9416-9426. doi:10.1021/bi901221s.
Liau YJ, Chen YT, Lin CY, Huang JK, Lin CT. Characterisation of 2-Cys peroxiredoxin isozyme (Prx1) from Taiwanofungus camphorata (Niu-chang-chih): expression and enzyme properties. Food Chem. 2010;119(1):154-160. doi:10.1016/j.foodchem.2009.06.008.
Moskovitz J, Bar-Noy S, Williams WM, Requena J, Berlett BS, Stadtman ER. Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals. PNAS. 2001;98(23):12920-12925. doi:10.1073/pnas.231472998.
Boschi-Muller S, Olry A, Antoine M, Branlant G. The enzymology and biochemistry of methionine sulfoxide reductases. Biochim Biophys Acta Proteins Proteom. 2005;1703(2):231-238. doi:10.1016/j.bbapap.2004.09.016.
Moskovitz J, Stadtman ER. Selenium-deficient diet enhances protein oxidation and affects methionine sulfoxide reductase (MsrB) protein level in certain mouse tissues. Proc Natl Acad Sci U S A PNAS. 2003;100(13):7486-7490. doi:10.1073/pnas.1332607100.
Lim JC, You Z, Kim G, Levine RL. Methionine sulfoxide reductase a is a stereospecific methionine oxidase. PNAS. 2011;108(26):10472-10477. doi:10.1073/pnas.1101275108.
Ruan H, Tang XD, Chen ML, et al. High-quality life extension by the enzyme peptide methionine sulfoxide reductase. PNAS. 2002;99(5):2748-2753. doi:10.1073/pnas.032671199.
Ogawa F, Sander CS, Hansel A, et al. The repair enzyme peptide methionine-S-sulfoxide reductase is expressed in human epidermis and upregulated by UVA radiation. J Invest Dermatol. 2006;126(5):1128-1134. doi:10.1038/sj.jid.5700116.
Taungjaruwinai WM, Bhawan J, Keady M, Thiele JJ. Differential expression of the antioxidant repair enzyme methionine sulfoxide reductase (MSRA and MSRB) in human skin. American Journal of Dermatopathology. 2009;31(5):427-431. doi:10.1097/DAD.0b013e3181882c21.
Stadtman ER, van Remmen H, Richardson A, Wehr NB, Levine RL. Methionine oxidation and aging. Biochim Biophys Acta Proteins Proteom. 2005;1703(2):135-140. doi:10.1016/j.bbapap.2004.08.010.
Schallreuter KU, Salem MAEL, Holtz S, Panske A. Basic evidence for epidermal H2H2/ONOO --mediated oxidation/nitration in segmental vitiligo is supported by repigmentation of skin and eyelashes after reduction of epidermal H 2H2 with topical NB-UVB-activated pseudocatalase PC-KUS. FASEB J. 2013;27(8):3113-3122. doi:10.1096/fj.12-226779.
Schallreuter KU, Rübsam K, Gibbons NCJ, et al. Methionine sulfoxide reductases a and B are deactivated by hydrogen peroxide (H2O2) in the epidermis of patients with vitiligo. J Invest Dermatol. 2008;128(4):808-815. doi:10.1038/sj.jid.5701100.
Pelle E, Maes D, Huang X, et al. Protection against UVB-induced oxidative stress in human skin cells and skin models by methionine sulfoxide reductase a. J Cosmet Sci. 2012;63(6):359-364.
Romero HM, Pell EJ, Tien M. Expression profile analysis and biochemical properties of the peptide methionine sulfoxide reductase a (PMSRA) gene family in Arabidopsis. Plant Sci. 2006;170(4):705-714. doi:10.1016/j.plantsci.2005.10.005.
Lowther WT, Brot N, Weissbach H, Honek JF, Matthews BW. Thiol-disulfide exchange is involved in the catalytic mechanism of peptide methionine sulfoxide reductase. PNAS. 2000;97(12):6463-6468.
Liu L, Wang MH. Expression and biological properties of a novel methionine sulfoxide reductase a in tobacco (Nicotiana tabacum). Protein J. 2013;32(4):266-274. doi:10.1007/s10930-013-9479-0.
Han AR, Kim MJ, Kwak GH, Son J, Hwang KY, Kim HY. Essential role of the linker region in the higher catalytic efficiency of a Bifunctional MsrA-MsrB fusion protein. Biochemistry. 2016;55(36):5117-5127. doi:10.1021/acs.biochem.6b00544.
Fukushima E, Shinka Y, Fukui T, Atomi H, Imanaka T. Methionine sulfoxide reductase from the hyperthermophilic archaeon Thermococcus kodakaraensis, an enzyme designed to function at suboptimal growth temperatures. J Bacteriol. 2007;189(19):7134-7144. doi:10.1128/JB.00751-06.
Weissbach H, Resnick L, Brot N. Methionine sulfoxide reductases: history and cellular role in protecting against oxidative damage. Biochim Biophys Acta Proteins Proteom. 2005;1703(2):203-212. doi:10.1016/j.bbapap.2004.10.004.
Jia P, Zhang C, Jia Y, et al. Identification of a truncated form of methionine sulfoxide reductase a expressed in mouse embryonic stem cells. J Biomed Sci. 2011;18(1):46. doi:10.1186/1423-0127-18-46.
Bond JS. Proteases: history, discovery, and roles in health and disease. J Biol Chem. 2019;294(5):1643-1651. doi:10.1074/jbc.TM118.004156.
Mb R, Am T, Ms G, Deshpande VV. Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev. 1998;62(3):597-635.
Li Q, Yi L, Marek P, Iverson BL. Commercial proteases: present and future. FEBS Lett. 2013;587(8):1155-1163. doi:10.1016/j.febslet.2012.12.019.
Shamsi A, Bano B. Journey of cystatins from being mere thiol protease inhibitors to at heart of many pathological conditions. Int J Biol Macromol. 2017;102:674-693. doi:10.1016/j.ijbiomac.2017.04.071.
Agbowuro AA, Huston WM, Gamble AB, Tyndall JDA. Proteases and protease inhibitors in infectious diseases. Med Res Rev. 2018;38(4):1295-1331. doi:10.1002/med.21475.
Alexander C, Andersson HS, Andersson LI, et al. Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J Mol Recognit. 2006;19(2):106-180. doi:10.1002/jmr.760.
Jaouadi NZ, Rekik H, Badis A, et al. Biochemical and molecular characterization of a serine keratinase from Brevibacillus brevis US575 with promising keratin-biodegradation and Hide-Dehairing activities. PloS One. 2013;8(10):e76722. doi:10.1371/journal.pone.0076722.
Jin HS, Park SY, Kim K, et al. Development of a keratinase activity assay using recombinant chicken feather keratin substrates. PloS One. 2017;12(2):e0172712. doi:10.1371/journal.pone.0172712.
Nnolim NE, Udenigwe CC, Okoh AI, Nwodo UU. Microbial keratinase: next generation green catalyst and prospective applications. Front Microbiol. 2020;11:580164. doi:10.3389/fmicb.2020.580164.
Okoroma EA, Garelick H, Abiola OO, Purchase D. Identification and characterisation of a bacillus licheniformis strain with profound keratinase activity for degradation of melanised feather. Int Biodeter Biodegr. 2012;74:54-60. doi:10.1016/j.ibiod.2012.07.013.
Gupta R, Ramnani P. Microbial keratinases and their prospective applications: An overview. Appl Microbiol Biotechnol. 2006;70(1):21-33. doi:10.1007/s00253-005-0239-8.
Korniłłowicz-Kowalska T, Bohacz J. Biodegradation of keratin waste: theory and practical aspects. Waste Manag. 2011;31(8):1689-1701. doi:10.1016/j.wasman.2011.03.024.
Gupta R, Rajput R, Sharma R, Gupta N. Biotechnological applications and prospective market of microbial keratinases. Appl Microbiol Biotechnol. 2013;97(23):9931-9940. doi:10.1007/s00253-013-5292-0.
Knutson DD. Ultrastructural observations in acne vulgaris: the normal sebaceuous follicle and acne lesions. J Invest Dermatol. 1974;62(3):288-307.
Burkhart CG. Skin disorders of the foot in active patients. Phys Sportsmed. 1999;27(2):88-101. doi:10.3810/psm.1999.02.673.
Grouios G. Corns and calluses in athletes' feet: a cause for concern. Foot. 2004;14(4):175-184. doi:10.1016/j.foot.2004.07.005.
Gupta DN, Rani R, Kokane AD, Ghosh DK, Tomar S, Sharma AK. Characterization of a cytoplasmic 2-Cys peroxiredoxin from Citrus sinensis and its potential role in protection from oxidative damage and wound healing. Int J Biol Macromol. 2022;209:1088-1099. doi:10.1016/j.ijbiomac.2022.04.086.
Fiwher T, Gedde-Dahl T. Epidermolysis bullosa simplex and mottled pigmentation: a new dominant syndrome. Clin Genet. 1979;15:228-238.
Irvine AD, McLean WHI. Human keratin diseases: the increasing spectrum of disease and subtlety of the phenotype-genotype correlation. Br J Dermatol. 1999;140(5):815-828. doi:10.1046/j.1365-2133.1999.02810.x.
Adelere IA, Lateef A. Keratinases: emerging trends in production and applications as novel multifunctional biocatalysts. Kuwait J Sci. 2016;43(3):118-127.
Sanghvi G, Patel H, Vaishnav D, et al. A novel alkaline keratinase from Bacillus subtilis DP1 with potential utility in cosmetic formulation. Int J Biol Macromol. 2016;87:256-262. doi:10.1016/j.ijbiomac.2016.02.067.
Martínez YN, Cavello I, Hours R, Cavalitto S, Castro GR. Immobilized keratinase and enrofloxacin loaded on pectin PVA cryogel patches for antimicrobial treatment. Bioresour Technol. 2013;145:280-284. doi:10.1016/j.biortech.2013.02.063.
Cheng SW, Hu HM, Shen SW, Takagi H, Asano M, Tsai YC. Production and characterization of keratinase of a feather-degrading bacillus Licheniformis PWD-1. Biosci Biotechnol Biochem. 1995;59(12):2239-2243. doi:10.1271/bbb.59.2239.
Gradišar H, Kern S, Friedrich J. Keratinase of Doratomyces microsporus. Appl Microbiol Biotechnol. 2000;53:196-200.
Gradišar H, Friedrich J, Križaj I, Jerala R. Similarities and specificities of fungal keratinolytic proteases: comparison of keratinases of Paecilomyces marquandii and Doratomyces microsporus to some known proteases. Appl Environ Microbiol. 2005;71(7):3420-3426. doi:10.1128/AEM.71.7.3420-3426.2005.
Gutiérrez-Fernández A, Inada M, Balbín M, et al. Increased inflammation delays wound healing in mice deficient in collagenase-2 (MMP-8). FASEB J. 2007;21(10):2580-2591. doi:10.1096/fj.06-7860com.
Xue Y, Nie H, Zhu L, Li S, Zhang H. Immobilization of modified papain with anhydride groups on activated cotton fabric. Appl Biochem Biotechnol. 2010;160(1):109-121. doi:10.1007/s12010-009-8588-x.
Amri E, Mamboya F. Papain, a plant enzyme of biological importance: a review. Am J Biochem Biotechnol. 2012;8(2):99-104. doi:10.3844/ajbbsp.2012.99.104.
Leite AP, Oliveira BGRB, Soares MF, Barrocas DLR. Uso e efetividade da papaína no processo de cicatrização de feridas: uma revisão sistemática. Rev Gaucha Enferm. 2012;33:198-207.
Pieper B, Caliri MHL. Nontraditional wound care: a review of the evidence for the use ofSugar, papaya/papain, and fatty acids. Wound Care. 2003;30:175-183.
Monetta L. Uso da papaína nos curativos feitos pela enfermagem. Rev Bras Enferm. 1987;40(67):66-73.
Starley IF, Mohammed P, Schneider G, Bickler SW. The treatment of paediatric burns using topical papaya. Burns. 1999;25:636-639. www.elsevier.com/locate/burns.
Mikhal'chik EV, Ivanova AV, Anurov MV, et al. Wound-healing effect of papaya-based preparation in experimental thermal trauma. Bull Exp Biol Med. 2004;137(6):638-640.
De Oliveira Pinto CAS, Lopes PS, Sarruf FD, et al. Comparative study of the stability of free and modified papain incorporated in topical formulations. Article Brazilian J Pharm Sci. 2011;47(4):751-760.
Chen YY, Lu YH, Ma CH, Tao WW, Zhu JJ, Zhang X. A novel elastic liposome for skin delivery of papain and its application on hypertrophic scar. Biomed Pharmacother. 2017;87:82-91. doi:10.1016/j.biopha.2016.12.076.
Manosroi A, Chankhampan C, Pattamapun K, Manosroi W, Manosroi J. Antioxidant and gelatinolytic activities of papain from papaya latex and bromelain from pineapple fruits. Chiang Mai J Sci. 2014;41(3):635-648.
Kong YR, Jong YX, Balakrishnan M, et al. Beneficial role of carica papaya extracts and phytochemicals on oxidative stress and related diseases: a mini review. Biology (Basel). 2021;10(4):1-20. doi:10.3390/biology10040287.
Velasco MVR. Desenvolvimento e Padronização de Gel Contendo Papaina Para Uso Tópico. University of São Paulo; 1993.
Asanarong O, Minh Quan V, Boonrungsiman S, Sukyai P. Bioactive wound dressing using bacterial cellulose loaded with papain composite: morphology, loading/release and antibacterial properties. Eur Polym J. 2021;143:110224. doi:10.1016/j.eurpolymj.2020.110224.
Langer V, Bhandari PS, Rajagopalan S, Mukherjee MK. Enzymatic debridement of large burn wounds with papain-urea: is it safe? Med J Armed Forces India. 2013;69(2):144-150. doi:10.1016/j.mjafi.2012.09.001.
Monetta L. Análise Evolutiva Do Processo de Cicatrização Em Úlceras Diabéticas, de Pressão e Venosas Com Uso de Papaína. University of São Paulo; 1998.
Shoba E, Lakra R, Kiran MS, Korrapati PS. Design and development of papain-urea loaded PVA nanofibers for wound debridement. RSC Adv. 2014;4(104):60209-60215. doi:10.1039/c4ra10239h.
Singh D, Singh R. Papain incorporated chitin dressings for wound debridement sterilized by gamma radiation. Radiat Phys Chem. 2012;81(11):1781-1785. doi:10.1016/j.radphyschem.2012.06.010.
Xue Y, Qi C, Dong Y, et al. Poly (γ-glutamic acid)/chitooligo-saccharide/papain hydrogel prevents hypertrophic scar during skin wound healing. J Biomed Mater Res B Appl Biomater. 2021;109(11):1724-1734. doi:10.1002/jbm.b.34830.
Traversa E, Machado-Santelli GM, Velasco MVR. Histological evaluation of hair follicle due to papain's depilatory effect. Int J Pharm. 2007;335(1-2):163-166. doi:10.1016/j.ijpharm.2007.01.020.
Santos Lopes P, Ruas GW, Rolim Baby A, et al. In vitro safety assessment of papain on human skin: a qualitative light and transmission electron microscopy (TEM) study. Brazilian. J Pharm Sci. 2008;44(1):151-156.
FDA. Questions and answers about FDA's enforcement action regarding unapproved topical drug products containing papain. U.S. Food and Drug Administration. 2015. https://www.fda.gov/drugs/unapproved.
Moreira Filho RNF, Vasconcelos NF, Andrade FK, de Freitas Rosa M, Vieira RS. Papain immobilized on alginate membrane for wound dressing application. Colloids Surf B Biointerfaces. 2020;194:111222. doi:10.1016/j.colsurfb.2020.111222.
Ajlia SASH, Majid FAA, Suvik A, Nouri S, Nouri E. Efficacacy of papain-based wound cleanser in promoting wound regeneration. Pak J Biolog Sci. 2010;13:596-603.
Balbín M, Fueyo A, Tester AM, et al. Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nat Genet. 2003;35(3):252-257. doi:10.1038/ng1249.
Scharffetter-Kochaneka K, Wlaschek M, Brivibab K, Siesb H. Singlet oxygen induces collagenase expression in human skin fibroblasts. Federat Eur Bioch Soc. 1993;331(3):304-306.
Armstrong DG, Jude EB. The role of matrix metalloproteinases in wound healing. J Am Podiatr Med Assoc. 2002;92(1):12-18. doi:10.7547/87507315-92-1-12.
Agren MS, Taplin CJ, Woessner JF Jr, Eaglstein WH, Mertz PM. Collagenase in wound healing: effect of wound age and type. J Invest Dermatol. 1992;99:709-714.
Dong KK, Damaghi N, Picart SD, et al. UV-induced DNA damage initiates release of MMP-1 in human skin. Exp Dermatol. 2008;17(12):1037-1044. doi:10.1111/j.1600-0625.2008.00747.x.
Moon HJ, Lee SR, Shim SN, et al. Fucoidan inhibits uvb-induced mmp-1 expression in human skin fibroblasts. Biol Pharm Bull. 2008;31:284-289.
Brugè F, Tiano L, Astolfi P, Emanuelli M, Damiani E. Prevention of UVA-induced oxidative damage in human dermal fibroblasts by new UV filters, assessed using a novel in vitro experimental system. PloS One. 2014;9(1):e83401. doi:10.1371/journal.pone.0083401.
Tewari A, Grys K, Kollet J, Sarkany R, Young AR. Upregulation of MMP12 and its activity by UVA1 in human skin: potential implications for photoaging. J Inves Dermat. 2014;134(10):2598-2609. doi:10.1038/jid.2014.173.
Fisher GJ, Kang S, Varani J, Bata-Csorgo Z, Wan Y, Datta S. Mechanisms of Photoaging and chronological skin aging. Arch Dermatol. 2002;138:1462-1470. https://jamanetwork.com/.
Reilly DM, Lozano J. Skin collagen through the lifestages: importance for skin health and beauty. Plast Aesthet Res. 2021;8:2. doi:10.20517/2347-9264.2020.153.
Muller M, Trocme C, Lardy B, Morel F, Halimi S, Benhamou PY. Matrix metalloproteinases and diabetic foot ulcers: the ratio of MMP-1 to TIMP-1 is a predictor of wound healing. Diabet Med. 2008;25(4):419-426. doi:10.1111/j.1464-5491.2008.02414.x.
Özcan CC, Ergün O, Çelik A, Çördük N, Özok G. Enzymatic debridement of burn wound with collagenase in children with partial-thickness. Burns. 2002;28:791-794.
Shi L, Carson D. Collagenase Santyl ointment a selective agent for wound debridement. J Wound Ostomy Continence Nurs. 2009;36:S12-S16.
Patry J, Blanchette V. Enzymatic debridement with collagenase in wounds and ulcers: a systematic review and meta-analysis. Int Wound J. 2017;14(6):1055-1065. doi:10.1111/iwj.12760.
Hay DC, Louie DL, Earp BE, Kaplan FTD, Akelman E, Blazar PE. Surgical findings in the treatment of Dupuytren's disease after initial treatment with clostridial collagenase (Xiaflex). J Hand Surg Eur Vol. 2014;39(5):663-665. doi:10.1177/1753193413488305.
Costas B, Coleman S, Kaufman G, James R, Cohen B, Gaston RG. Efficacy and safety of collagenase clostridium histolyticum for Dupuytren disease nodules: a randomized controlled trial. BMC Musculoskelet Disord. 2017;18(1):374. doi:10.1186/s12891-017-1713-z.
Abdel Raheem A, Johnson M, Abdel-Raheem T, Capece M, Ralph D. Collagenase clostridium histolyticum in the treatment of Peyronie's disease-a review of the literature and a new modified protocol. Sex Med Rev. 2017;5(4):529-535. doi:10.1016/j.sxmr.2017.07.005.
Gelbard M, Goldstein I, Hellstrom WJG, et al. Clinical efficacy, safety and tolerability of collagenase clostridium histolyticum for the treatment of peyronie disease in 2 large double-blind, randomized, placebo controlled phase 3 studies. J Urol. 2013;190(1):199-207. doi:10.1016/j.juro.2013.01.087.
Finanzench. Endo presents new Qwo® (collagenase clostridium histolyticum-aaes) data at the American Society for dermatologic surgery's annual meeting. Published October 7, 2022 www.endoaesthetics.com.
Huett E, Bartley W, Morris D, Reasbeck D, McKitrick-Bandy B, Yates C. Collagenase for wound debridement in the neonatal intensive care unit: a retrospective case series. Pediatr Dermatol. 2017;34(3):277-281. doi:10.1111/pde.13118.
Shi L, Ramsay S, Ermis R, Carson D. PH in the bacteria-contaminated wound and its impact on clostridium histolyticum collagenase activity: implications for the use of collagenase wound debridement agents. J Wound Ostomy Continence Nurs. 2011;38(5):514-521. doi:10.1097/WON.0b013e31822ad034.
di Pasquale R, Vaccaro S, Caputo M, et al. Collagenase-assisted wound bed preparation: An in vitro comparison between vibrio alginolyticus and clostridium histolyticum collagenases on substrate specificity. Int Wound J. 2019;16(4):1013-1023. doi:10.1111/iwj.13148.
Villegas MR, Baeza A, Usategui A, Ortiz-Romero PL, Pablos JL, Vallet-Regí M. Collagenase nanocapsules: An approach to fibrosis treatment. Acta Biomater. 2018;74:430-438. doi:10.1016/j.actbio.2018.05.007.
Bae-Harboe YSC, Harboe-Schmidt JE, Graber E, Gilchrest BA. Collagenase followed by compression for the treatment of earlobe keloids. Dermatol Surg. 2014;40(5):519-524. doi:10.1111/dsu.12465.
Mandl I, Jd M, El H. Isolation and characterization of proteinase and collagenase from Cl. Histolyticum. J Clin Invest. 1953;32(12):1323-1329. doi:10.1172/JCI102861.
Sugasawara R, Harper E. Methods Enzymol. 64, 94. In: Cleland WW, ed. (1982) Methods Enzymol. Vol 23. University Park Press; 1984. https://pubs.acs.org/sharingguidelines.
Maier T, Korting HC. Sunscreens - which and what for? Skin Pharmacol Physiol. 2005;18(6):253-262. doi:10.1159/000087606.
Megna M, Lembo S, Balato N, Monfrecola G. “Active” photoprotection: sunscreens with DNA repair enzymes. G Ital Dermatol Venereol. 2017;152:302-307.
Stiefel C, Schwack W. Photoprotection in changing times - UV filter efficacy and safety, sensitization processes and regulatory aspects. Int J Cosmet Sci. 2015;37(1):2-30. doi:10.1111/ics.12165.
Tanaka K, Sekiguchit M, Okada Y. Restoration of ultraviolet-induced unscheduled DNA synthesis of xeroderma pigmentosum cells by the concomitant treatment with bacteriophage T4 endonuclease V and HVJ (Sendai virus) (excision repair/complementation group/incision). Genetics. 1975;72(10):4071-4075. https://www.pnas.org.
Yarosh DB, Rosenthal A, Moy R. Six critical questions for DNA repair enzymes in skincare products: a review in dialog. Clin Cosmet Investig Dermatol. 2019;12:617-624. doi:10.2147/CCID.S220741.
Nyaga SG, Dodson ML, Lloyd RS. Role of specific amino acid residues in T4 endonuclease V that alter nontarget DNA binding †. 1997.
Demple B, Gates FT, Linn S. Purification and properties of Escherichia coli Endodeoxyribonuclease V. Methods Enzymol. 1980;65:224-231.
Wang Y, Zhang L, Zhu X, et al. Biochemical characterization of a thermostable endonuclease V from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5. Int J Biol Macromol. 2018;117:17-24. doi:10.1016/j.ijbiomac.2018.05.155.
Ishino S, Makita N, Shiraishi M, Yamagami T, Ishino Y. EndoQ and EndoV work individually for damaged DNA base repair in Pyrococcus furiosus. Biochimie. 2015;118:264-269. doi:10.1016/j.biochi.2015.06.015.
Leccia MT, Lebbe C, Claudel JP, Narda M, Basset-Seguin N. New vision in Photoprotection and Photorepair. Dermatol Therapeut. 2019;9(1):103-115. doi:10.1007/s13555-019-0282-5.
Stege H, Roza L, Vink AA, et al. Enzyme plus light therapy to repair DNA damage in Ultraiolet-B-irradiated human skin. Proc Natl Acad Sci U S A. 2000;97(4):1790-1795. www.pnas.orgcgidoi10.1073pnas.030528897.
Cafardi JA, Elmets CA. Drug evaluation T4 endonuclease V: review and application to dermatology. Expert Opin Biol Ther. 2008;8(6):829-838. doi:10.1517/14712590802133042.
Hosokawa Y, Sato R, Iwai S, Yamamoto J. Implications of a water molecule for Photoactivation of plant (6-4) photolyase. J Phys Chem B. 2019;123(24):5059-5068. doi:10.1021/acs.jpcb.9b03030.
Santos BHC. Papel Biológico Dos Dímeros de Pirimidina Em Células Humanas Irradiadas Com Radiação UVA. Univeristy of São Paulo; 2010.
Sancar A. Mechanismen der DNA-Reparatur durch Photolyasen und Exzisionsnukleasen (Nobel-Aufsatz). Angewandte Chemie. 2016;128(30):8643-8670. doi:10.1002/ange.201601524.
Jorns MS, Baldwin ET, Sancar GB, Sancar A. Action mechanism of Escherichia coli DNA photolyase. II. Role of the chromophores in catalysis. J Biol Chem. 1987;262(1):486-491. doi:10.1016/s0021-9258(19)75953-5.
Jans J, Garinis GA, Schul W, et al. Differential role of basal keratinocytes in UV-induced immunosuppression and skin cancer. Mol Cell Biol. 2006;26(22):8515-8526. doi:10.1128/mcb.00807-06.
Stege H, Roza L, Vink AA, et al. Enzyme plus light therapy to repair DNA damage in ultraviolet-B-irradiated human skin. PNAS. 1999;97(4):1790-1795. www.pnas.orgcgidoi10.1073pnas.030528897.
Rstom SA, Abdalla BMZ, Rezze GG, Paschoal FM. Evaluation of the effects of a cream containing liposome encapsulated photolyase and SPF 100 sunscreen on facial actinic keratosis: clinical, dermoscopic, and confocal microscopy based analisys. Surg Cosmet Dermatol. 2014;6(3):226-231. https://www.researchgate.net/publication/287528620.
Graf D, Wesslowski J, Ma H, et al. Key amino acids in the bacterial (6-4) photolyase PhrB from agrobacterium fabrum. PloS One. 2015;10(10):e0140955. doi:10.1371/journal.pone.0140955.
Holub D, Ma H, Krauß N, Lamparter T, Elstner M, Gillet N. Functional role of an unusual tyrosine residue in the electron transfer chain of a prokaryotic (6-4) photolyase. Chem Sci. 2018;9(5):1259-1272. doi:10.1039/c7sc03386a.
An M, Zheng Z, Qu C, et al. The first (6-4) photolyase with DNA damage repair activity from the Antarctic microalga Chlamydomonas sp. ICE-L. mutation research fundamental and molecular mechanisms of. Mutagenesis. 2018;809:13-19. doi:10.1016/j.mrfmmm.2018.03.004.
Jordan SP, Alderfer JL, Chanderkar LP, Schuman JM. Reaction of Escherichia coli and yeast photolyases with homogeneous short-chain oligonucleotide Substrates1-that the enzyme interacts with a rather. Biochemistry. 1989;28:8149-8153. https://pubs.acs.org/sharingguidelines.
Berardesca E, Bertona M, Altabas K, Altabas V, Emanuele E. Reduced ultraviolet-induced DNA damage and apoptosis in human skin with topical application of a photolyase-containing DNA repair enzyme cream: clues to skin cancer prevention. Mol Med Rep. 2012;5(2):570-574. doi:10.3892/mmr.2011.673.
Emanuele E, Altabas V, Altabas K, Beradesca E. Topical application of preparations containing DNA repair enzymes prevents ultraviolet-induced telomere shortening and c-FOS proto-oncogene Hyperexpression in human skin: an experimental pilot study. Drugs Dermatol. 2013;12(9):1017-1021.
Puig S, Granger C, Garre A, Trullàs C, Sanmartin O, Argenziano G. Review of clinical evidence over 10 years on prevention and treatment of a film-forming medical device containing photolyase in the Management of Field Cancerization in actinic keratosis. Dermatol Ther (Heidelb). 2019;9(2):259-270. doi:10.6084/m9.figshare.7901618.
Moscarella E, Argenziano G, Longo C, Aladren S. Management of cancerization field with a medical device containing photolyase: a randomized, double-blind, parallel-group pilot study. J Eur Acad Dermatol Venereol. 2017;31(9):e401-e403. doi:10.1111/jdv.14209.
Bos JD, Meinardi MMHM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol. 2000;9(3):165-169. doi:10.1034/j.1600-0625.2000.009003165.x.
Vaile JH, Davis P. Topical NSAIDs for musculoskeletal conditions a review of the literature. Drugs. 1998;56:783-799.
Vogt A, Combadiere B, Hadam S, et al. 40 nm, but not 750 or 1,500 nm, nanoparticles enter epidermal CD1a+ cells after transcutaneous application on human skin. J Invest Dermatol. 2006;126(6):1316-1322. doi:10.1038/sj.jid.5700226.
Skowron K, Bauza-kaszewska J, Kraszewska Z, et al. Human skin microbiome: impact of intrinsic and extrinsic factors on skin microbiota. Microorganisms. 2021;9(3):1-20. doi:10.3390/microorganisms9030543.
Cioni P, Gabellieri E, Campanini B, Bettati S, Raboni S. Use of exogenous enzymes in human therapy: approved drugs and potential applications. Curr Med Chem. 2022;29(3):411-452.
Pudlarz A, Szemraj J. Nanoparticles as carriers of proteins, peptides and other therapeutic molecules. Open Life Sci. 2018;13:285-298.
Fournière M, Latire T, Souak D, Feuilloley MGJ, Bedoux G. Staphylococcus epidermidis and cutibacterium acnes: two major sentinels of skin microbiota and the influence of cosmetics. Microorganisms. 2020;8(11):1-31. doi:10.3390/microorganisms8111752.
Sigfrid LA, Cunningham JM, Beeharry N, Lortz S, Tiedge M, Lenzen S. Cytokines and nitric oxide inhibit the enzyme activity of catalase but not its protein or mRNA expression in insulin-producing cells. J Mol Endocrinol. 2003;31:509-518. http://www.endocrinology.org.
Marklund SL. Regulation by cytokines of extracellular superoxide dismutase and other superoxide dismutase isoenzymes in fibroblasts. J Biol Chem. 1992;267(10):6696-6701. doi:10.1016/s0021-9258(19)50482-3.
Tsuchida K, Iwasa T, Kobayashi M. Imaging of ultraweak photon emission for evaluating the oxidative stress of human skin. J Photochem Photobiol B. 2019;198:1-8. doi:10.1016/j.jphotobiol.2019.111562.
Sanclemente G, Garcia JJ, Zuleta JJ, Diehl C, Correa C, Falabella R. A double-blind, randomized trial of 0.05% betamethasone vs. topical catalase/dismutase superoxide in vitiligo. J Eur Acad Dermatol Venereol. 2008;22(11):1359-1364. doi:10.1111/j.1468-3083.2008.02839.x.
Declercq L, Sente I, Hellemans L, Corstjens H, Maes D. Use of the synthetic superoxide dismutase/catalase mimetic EUK-134 to compensate for seasonal antioxidant deficiency by reducing pre-existing lipid peroxides at the human skin surface. Int J Cosmet Sci. 2004;26(5):255-263. doi:10.1111/j.1467-2494.2004.00234.x.
Lintner K, Mas-Chamberlin C, Mondon P, Peschard O, Lamy L. Cosmeceuticals and active ingredients. Clin Dermatol. 2009;27(5):461-468. doi:10.1016/j.clindermatol.2009.05.009.
European Parlament and The Council of the European Union. Regulation (EC) No 1223/2009 of the European parliament and of the council of 30 November 2009. 2009. Accessed March 15, 2023 https://health.ec.europa.eu/system/files/2016-11/cosmetic_1223_2009_regulation_en_0.pdf#:~:text=This%20Regulation%20aims%20at%20simplifying,of%20protection%20of%20human%20health.
CTRI/2018/10/015881. Efficacy of neutral superoxide spray in enhancing wound healing. 2018. Accessed March 13, 2023 https://www.ctri.nic.in/Clinicaltrials/pmaindet2.php?trialid=28556.
NCT01513278. Study of APN201 (liposomal recombinant human Cu/Zn-superoxide dismutase) for the prevention of radiation-induced Der… study of APN201 (liposomal recombinant human Cu/Zn-superoxide dismutase) for the prevention of radiation-induced dermatitis in women with breast cancer sponsor. 2012. Accessed March 13, 2023 https://clinicaltrials.gov/ct2/show/study/NCT01513278.
Apeiron Biologics. PRESS RELEASE: positive outcome in clinical study to prevent radiation-induced dermatitis in breast cancer patients Vienna, 5 march 2013-APEIRON biologics AG (Apeiron) today announced that the clinical trial with their liposomal formulation of recombinant superoxide dismutase. 2013. Accessed March 13, 2023 https://www.apeiron-biologics.com/wp-content/uploads/APEIRON_PR_13_03_E.pdf.
Vedamurthy M, Humbert P. A randomized, open label, comparative, five-arm, controlled study evaluating the benefit and tolerability of oral superoxide dismutase combined with gliadin as add-on neutraceutical therapy with standard therapy in Indian patients with melasma. Int J Res Dermatol. 2018;4(4):471. doi:10.18203/issn.2455-4529.intjresdermatol20184453.
NCT03878433. Oral superoxide dismutase (GLISODin) to decrease melasma severity. (Glisodin). 2019. Accessed March 13, 2023 https://clinicaltrials.gov/ct2/show/NCT03878433.
EUCTR2019-002745-38-GB. A study of superoxide dismutase mimetic GC4419 for the reduction of severe Oral Mucositis (SOM) in patients with head and neck cancer. 2019. Accessed March 13, 2023 https://trialsearch.who.int/Trial2.aspx?TrialID=EUCTR2019-002745-38-GB.
Adamietz IA. A superoxide dismutase mimetic (GC4419) vs. placebo to reduce severe oral mucositis due to concurrent radiotherapy and cisplatin for head and neck cancer: a phase-IIb randomized double-blind study. Strahlenther Onkol. 2020;196:834-836. doi:10.1007/s00066-020-01639-3.
Lefaix JL, Delanian S, Leplat JJ, et al. Successful treatment of radiation-induced fibrosis using cu/zn-sod and mn-sod: an experimental study. Int J Radiation Oncology Biol Phys. 1996;35(2):305-312.
NCT03941808. Gastroprotected superoxide dismutase in combination with UVB vs placebo and UVB for treating vitiligo. (Vitisod). 2019. Accessed March 13, 2023 https://clinicaltrials.gov/ct2/show/NCT03941808?term=superoxide+dismutase&draw=3&rank=12.
Fontas E, Montaudié H, Passeron T. Oral gliadin-protected superoxide dismutase in addition to phototherapy for treating non-segmental vitiligo: a 24-week prospective randomized placebo-controlled study. J Eur Acad Dermatol Venereol. 2021;35(8):1725-1729. doi:10.1111/jdv.17331.
NCT04607642. Trial of BMX-001 or placebo in head and neck cancer patients. 2020. Accessed March 13, 2023 https://clinicaltrials.gov/ct2/show/NCT04607642?term=superoxide+dismutase&draw=11&rank=94.
NCT01771991. Study of topical superoxide dismutase to treat radiation induced fibrosis Sodermix. 2020. Accessed March 13, 2023 https://trialsearch.who.int/Trial2.aspx?TrialID=NCT01771991.
Kümin A, Huber C, Rülicke T, Wolf E, Werner S. Peroxiredoxin 6 is a potent cytoprotective enzyme in the epidermis. Am J Pathol. 2006;169(4):1194-1205. doi:10.2353/ajpath.2006.060119.
Kümin A, Schäfer M, Epp N, et al. Peroxiredoxin 6 is required for blood vessel integrity in wounded skin. J Cell Biol. 2007;179(4):747-760. doi:10.1083/jcb.200706090.
NCT00485329. Assessment of the safety and efficacy of DERMASTREAM™-ENZYSTREAM™ system for the treatment of chronic venous (ENZ-DER-002-IL). 2010 https://clinicaltrials.gov/ct2/show/NCT00485329?term=papain&draw=2&rank=51/7.
NCT01943136. The efficacy and safety of topical papaya (carica papaya) leaf extract 1% ointment versus mupirocin 2% ointment in the treatment of limited impetigo: a randomized, double-blind, controlled clinical trial study. 2013 https://clinicaltrials.gov/ct2/show/NCT019431361/8.
NCT02015195. Effective treatments for jellyfish stings. 2013 https://clinicaltrials.gov/ct2/show/NCT02015195?term=papain&draw=3&rank=111/8.
Rodrigues ALS, de Oliveira BGRB, Futuro DO, Secoli SR. Effectiveness of papain gel in venous ulcer treatment: randomized clinical trial. Rev Lat Am Enfermagem. 2015;23(3):458-465. doi:10.1590/0104-1169.0381.2576.
Stremnitzer C, Manzano-Szalai K, Willensdorfer A, et al. Papain degrades tight junction proteins of human keratinocytes in vitro and sensitizes C57BL/6 mice via the skin independent of its enzymatic activity or TLR4 activation. J Invest Dermatol. 2015;135(7):1790-1800. doi:10.1038/jid.2015.58.
Kaufman-Janette J, Joseph JH, Kaminer MS, et al. Collagenase clostridium Histolyticum-aaes for the treatment of cellulite in women: results from two phase 3 randomized, placebo-controlled trials. Dermatol Surg. 2021;47(5):649-656. doi:10.1097/DSS.0000000000002952.
NCT03428750. Effectiveness and safety of EN3835 in the treatment of EFP (cellulite) in women (RELEASE-1). 2020. Accessed March 22, 2023 https://classic.clinicaltrials.gov/ct2/show/NCT03428750.
NCT00261144. Collagenase in the treatment of cellulite. 2012. Accessed March 22, 2023 https://clinicaltrials.gov/ct2/show/NCT00261144?term=Collagenase&draw=3&rank=12.
NCT00651820. Effect of collagenase on healing and scarring. 2011. Accessed March 22, 2023 https://clinicaltrials.gov/ct2/show/NCT00651820?term=Collagenase&draw=2&rank=2.
NCT02482948. MEDIHONEY® gel versus collagenase for wound debridement. 2017. Accessed March 22, 2023 https://clinicaltrials.gov/ct2/show/NCT02482948?term=Collagenase&draw=2&rank=41/6.
NCT05777031. Safety and efficacy of collagenase clostridium Histolyticum after prior Intralesional PRP for Peyronie's disease. 2023. Accessed March 22, 2023 https://clinicaltrials.gov/ct2/show/NCT05777031?term=Collagenase&draw=3&rank=111/7.
NCT02716519. Use of Santyl within an accountable care organization. 2017. Accessed March 22, 2023 https://clinicaltrials.gov/ct2/show/NCT02716519?term=Collagenase&draw=3&rank=20.
NCT00787592. SSD vs collagenase in pediatric burn patients. 2021. Accessed March 22, 2023 https://clinicaltrials.gov/ct2/show/study/NCT00787592?term=Collagenase&draw=4&rank=281/6.
NCT02249052. Double blind study to evaluate the efficacy of collagenase Histolyticum in the treatment of lipoma. 2017. Accessed March 22, 2023 https://clinicaltrials.gov/ct2/show/study/NCT02249052?term=Collagenase&draw=5&rank=321/7.
Braun WPH. Contact allergy to collagenase mixture (Iruxol). Contact Dermatitis. 1975;1:241-272.
NCT00089180. T4N5 liposomal lotion in preventing the recurrence of nonmelanoma skin cancer in patients who have undergone a kidney transplant. 2015. Accessed April 11, 2023 https://clinicaltrials.gov/ct2/show/NCT000891801/8.
NCT03224715. Actinic Cheilitis pre-treated with DNA repair enzyme cream. 2018. Accessed April 11, 2023 https://clinicaltrials.gov/ct2/show/NCT03224715?term=t4+endonuclease&draw=2&rank=21/6.
Rosenthal Ba A, Lyons A, Moy L, et al. DNA repair enzyme containing lip balm for the treatment of actinic Cheilitis: a pilot study. J drugs Dermatol. 2019;18(6):576. https://jddonline.com/articles/dna.
NCT00002811. T4N5 liposome lotion compared with placebo lotion for preventing actinic Keratoses in patients with Xeroderma Pigmentosum. 2004. Accessed April 11, 2023 https://clinicaltrials.gov/ct2/show/NCT00002811?term=T4N5&draw=2&rank=21/6.
Yarosh D, Klein J, O'Connor A, Hawk J, Rafal E, Wolf P. Effect of topically applied T4 endonuclease V in liposomes on skincancer in xeroderma pigmentosum: a randomised study. Lancet. 2001;357:926-929.
Wolf P, Cox P, Yarosh DB, Kripke ML. Sunscreens and T4N5 liposomes differ in their ability to Pl·otect against ultraviolet-induced sunburn cell formation, alterations of dendritic epidermal cells, and local suppression of contact hypersensitivity. J Invest Dermatol. 1995;104:287-292.
Yarosh D, Alas LG, Yee V, et al. Pyrimidine dimer removal enhanced by DNA repair liposomes reduces the incidence of UV skin cancer in mice. Cancer Res. 1992;52:4227-4231. http://aacrjournals.org/cancerres/article-pdf/52/15/4227/2447710/cr0520154227.pdf.
Yarosh D, Klein J, Kibitel J, et al. Enzyme therapy of xeroderma pigmentosum: safety and efficacy testing of T4N5 liposome lotion containing a prokaryotic DNA repair enzyme. Photodermatol Photoimmunol Photomed. 1996;12(3):122-130. doi:10.1111/j.1600-0781.1996.tb00188.x.
ISRCTN16168548. Efficacy of different photoprotection strategies in preventing actinic keratosis recurrence after photodynamic therapy. 2018. Accessed April 11, 2023 https://trialsearch.who.int/Trial2.aspx?TrialID=ISRCTN16168548.
Pavone PS, Lovati S, Scarcella G, Milani M. Efficacy of different photoprotection strategies in preventing actinic keratosis new lesions after photodynamic therapy. The ATHENA study: a two-center, randomized, prospective, assessor-blinded pragmatic trial. Curr Med Res Opin. 2019;35(1):141-145. doi:10.1080/03007995.2018.1544887.
ISRCTN12347628. Use of sunscreens with DNA repair components are more efficacious that sunscreen only in improving keratosis actinica patients clinicaloutcome after photodynamic therapy. 2014. Accessed April 11, 2023 https://trialsearch.who.int/Trial2.aspx?TrialID=ISRCTN12347628.
Lamberti A, Cartocci A, Donelli C, et al. Prevention strategies in patients affected by actinic keratosis of the head: a 12-month, prospective, assessor-blinded, controlled study with lesion-directed treatment associated with medicalized Photoprotection. J Clin Exp Dermat Res. 2022;13(5):1-8. doi:10.35841/2329-9509.22.13.620.
Schul W, Jans J, Rijksen YMA, et al. Enhanced repair of cyclobutane pyrimidine dimers and improved UV resistance in photolyase transgenic mice. EMBO J. 2002;21(17):4719-4729. doi:10.1093/emboj/cdf456.
Jans J, Schul W, Sert Y, et al. Powerful skin cancer Protectionby a CPD-photolyase transgene. Curr Biol. 2005;15:105-115. - Grant Information: extranjero/2020 - 72210489 Agencia Nacional de Investigación y Desarrollo; CAPES-Brazil process number: 001 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; # 309953/2020-0 Conselho Nacional de Desenvolvimento Científico e Tecnológico; 2020/08129-6 2022/01138-5 Fundação de Amparo à Pesquisa do Estado de São Paulo
- Contributed Indexing: Keywords: DNA repair enzymes; antioxidant enzymes; enzymes for topical use; proteases
- الرقم المعرف: 0 (Cosmetics)
- الموضوع: Date Created: 20240129 Date Completed: 20240130 Latest Revision: 20240206
- الموضوع: 20250114
- الرقم المعرف: 10.1111/exd.15008
- الرقم المعرف: 38284197
- المصدر:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login

حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.