Item request has been placed!
×
Item request cannot be made.
×

Adult stem cells in the eye: Identification, characterisation, and therapeutic application in ocular regeneration - A review.
Item request has been placed!
×
Item request cannot be made.
×

- المؤلفون: Xiao Y;Xiao Y; McGhee CNJ; McGhee CNJ; Zhang J; Zhang J
- المصدر:
Clinical & experimental ophthalmology [Clin Exp Ophthalmol] 2024 Mar; Vol. 52 (2), pp. 148-166. Date of Electronic Publication: 2024 Jan 12.- نوع النشر :
Journal Article; Review- اللغة:
English - المصدر:
- معلومة اضافية
- المصدر: Publisher: Wiley-Blackwell Pub. Asia Country of Publication: Australia NLM ID: 100896531 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1442-9071 (Electronic) Linking ISSN: 14426404 NLM ISO Abbreviation: Clin Exp Ophthalmol Subsets: MEDLINE
- بيانات النشر: Publication: Carlton, Vic. : Wiley-Blackwell Pub. Asia
Original Publication: Carlton, Vic. : Blackwell Science Asia, c2000- - الموضوع:
- نبذة مختصرة : Adult stem cells, present in various parts of the human body, are undifferentiated cells that can proliferate and differentiate to replace dying cells within tissues. Stem cells have specifically been identified in the cornea, trabecular meshwork, crystalline lens, iris, ciliary body, retina, choroid, sclera, conjunctiva, eyelid, lacrimal gland, and orbital fat. The identification of ocular stem cells broadens the potential therapeutic strategies for untreatable eye diseases. Currently, stem cell transplantation for corneal and conjunctival diseases remains the most common stem cell-based therapy in ocular clinical management. Lens epithelial stem cells have been applied in the treatment of paediatric cataracts. Several early-phase clinical trials for corneal and retinal regeneration using ocular stem cells are also underway. Extensive preclinical studies using ocular stem cells have been conducted, showing encouraging outcomes. Ocular stem cells currently demonstrate great promise in potential treatments of eye diseases. In this review, we focus on the identification, characterisation, and therapeutic application of adult stem cells in the eye.
(© 2024 The Authors. Clinical & Experimental Ophthalmology published by John Wiley & Sons Australia, Ltd on behalf of Royal Australian and New Zealand College of Ophthalmologists.) - References: Cable J, Fuchs E, Weissman I, et al. Adult stem cells and regenerative medicine-a symposium report. Ann N Y Acad Sci. 2020;1462(1):27-36.
Zakrzewski W, Dobrzynski M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10(1):68.
Meek KM, Knupp C. Corneal structure and transparency. Prog Retin Eye Res. 2015;49:1-16.
Patel DV, Sherwin T, McGhee CN. Laser scanning in vivo confocal microscopy of the normal human corneoscleral limbus. Invest Ophthalmol Vis Sci. 2006;47(7):2823-2827.
Chang CY, McGhee JJ, Green CR, Sherwin T. Comparison of stem cell properties in cell populations isolated from human central and limbal corneal epithelium. Cornea. 2011;30(10):1155-1162.
Davanger M, Evensen A. Role of the pericorneal papillary structure in renewal of corneal epithelium. Nature. 1971;229(5286):560-561.
Yazdanpanah G, Haq Z, Kang K, Jabbehdari S, Rosenblatt ML, Djalilian AR. Strategies for reconstructing the limbal stem cell niche. Ocul Surf. 2019;17(2):230-240.
Yoon JJ, Ismail S, Sherwin T. Limbal stem cells: central concepts of corneal epithelial homeostasis. World J Stem Cells. 2014;6(4):391-403.
Li W, Hayashida Y, Chen YT, Tseng SC. Niche regulation of corneal epithelial stem cells at the limbus. Cell Res. 2007;17(1):26-36.
Bonnet C, Gonzalez S, Roberts JS, et al. Human limbal epithelial stem cell regulation, bioengineering and function. Prog Retin Eye Res. 2021;85:100956.
Chee KY, Kicic A, Wiffen SJ. Limbal stem cells: the search for a marker. Clin Exp Ophthalmol. 2006;34(1):64-73.
Takacs L, Toth E, Berta A, Vereb G. Stem cells of the adult cornea: from cytometric markers to therapeutic applications. Cytometry A. 2009;75(1):54-66.
Gonzalez S, Chen L, Deng SX. Comparative study of xenobiotic-free Media for the cultivation of human limbal epithelial stem/progenitor cells. Tissue Eng C: Methods. 2017;23(4):219-227.
Chang CY, Green CR, McGhee CN, Sherwin T. Acute wound healing in the human central corneal epithelium appears to be independent of limbal stem cell influence. Invest Ophthalmol Vis Sci. 2008;49(12):5279-5286.
Truong TT, Huynh K, Nakatsu MN, Deng SX. SSEA4 is a potential negative marker for the enrichment of human corneal epithelial stem/progenitor cells. Invest Ophthalmol Vis Sci. 2011;52(9):6315-6320.
Le Q, Xu J, Deng SX. The diagnosis of limbal stem cell deficiency. Ocul Surf. 2018;16(1):58-69.
Harkin DG, Apel AJ, Di Girolamo N, et al. Current status and future prospects for cultured limbal tissue transplants in Australia and New Zealand. Clin Exp Ophthalmol. 2013;41(3):272-281.
Rama P, Matuska S, Paganoni G, Spinelli A, De Luca M, Pellegrini G. Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med. 2010;363(2):147-155.
Guo P, Sun H, Zhang Y, et al. Limbal niche cells are a potent resource of adult mesenchymal progenitors. J Cell Mol Med. 2018;22(7):3315-3322.
Xie HT, Chen SY, Li GG, Tseng SC. Isolation and expansion of human limbal stromal niche cells. Invest Ophthalmol Vis Sci. 2012;53(1):279-286.
Xiao YT, Qu JY, Xie HT, Zhang MC, Zhao XY. A comparison of methods for isolation of limbal niche cells: maintenance of limbal epithelial stem/progenitor cells. Invest Ophthalmol Vis Sci. 2020;61(14):16.
Imanishi J, Kamiyama K, Iguchi I, Kita M, Sotozono C, Kinoshita S. Growth factors: importance in wound healing and maintenance of transparency of the cornea. Prog Retin Eye Res. 2000;19(1):113-129.
Mathan JJ, Ismail S, McGhee JJ, McGhee CN, Sherwin T. Sphere-forming cells from peripheral cornea demonstrate the ability to repopulate the ocular surface. Stem Cell Res Ther. 2016;7(1):81.
Funderburgh JL, Funderburgh ML, Du Y. Stem cells in the limbal stroma. Ocul Surf. 2016;14(2):113-120.
Dravida S, Pal R, Khanna A, Tipnis SP, Ravindran G, Khan F. The transdifferentiation potential of limbal fibroblast-like cells. Brain Res Dev Brain Res. 2005;160(2):239-251.
Greene CA, Chang CY, Fraser CJ, et al. Cells from the adult corneal stroma can be reprogrammed to a neuron-like cell using exogenous growth factors. Exp Cell Res. 2014;322(1):122-132.
Patel DV, McKelvie J, Sherwin T, McGhee C. Keratocyte progenitor cell transplantation: a novel therapeutic strategy for corneal disease. Med Hypotheses. 2013;80(2):122-124.
Wadhwa H, Ismail S, McGhee JJ, Van der Werf B, Sherwin T. Sphere-forming corneal cells repopulate dystrophic keratoconic stroma: implications for potential therapy. World J Stem Cells. 2020;12(1):35-54.
Du Y, Carlson EC, Funderburgh ML, et al. Stem cell therapy restores transparency to defective murine corneas. Stem Cells. 2009;27(7):1635-1642.
Clinical Trials.gov. https://classic.clinicaltrials.gov/ct2/show/NCT04932629.
Mimura T, Yamagami S, Amano S. Corneal endothelial regeneration and tissue engineering. Prog Retin Eye Res. 2013;35:1-17.
Zhang J, Patel DV, McGhee CNJ. The rapid transformation of transplantation for corneal endothelial diseases: an evolution from penetrating to lamellar to cellular transplants. Asia Pac J Ophthalmol (Phila). 2019;8(6):441-447.
Braunger BM, Ademoglu B, Koschade SE, et al. Identification of adult stem cells in Schwalbe's line region of the primate eye. Invest Ophthalmol Vis Sci. 2014;55(11):7499-7507.
Espana EM, Sun M, Birk DE. Existence of corneal endothelial slow-cycling cells. Invest Ophthalmol Vis Sci. 2015;56(6):3827-3837.
Yu WY, Sheridan C, Grierson I, et al. Progenitors for the corneal endothelium and trabecular meshwork: a potential source for personalized stem cell therapy in corneal endothelial diseases and glaucoma. J Biomed Biotechnol. 2011;2011:412743.
Yam GH, Seah X, Yusoff N, et al. Characterization of human transition zone reveals a putative progenitor-enriched niche of corneal endothelium. Cells. 2019;8(10):1244.
Zhang J, Ahmad AM, Ng H, Shi J, McGhee CNJ, Patel DV. Successful culture of human transition zone cells. Clin Exp Ophthalmol. 2020;48(5):689-700.
Sie NM, Yam GH, Soh YQ, et al. Regenerative capacity of the corneal transition zone for endothelial cell therapy. Stem Cell Res Ther. 2020;11(1):523.
Johnson M. What controls aqueous humour outflow resistance? Exp Eye Res. 2006;82(4):545-547.
van Zyl T, Yan W, McAdams A, et al. Cell atlas of aqueous humor outflow pathways in eyes of humans and four model species provides insight into glaucoma pathogenesis. Proc Natl Acad Sci USA. 2020;117(19):10339-10349.
Keller KE, Peters DM. Pathogenesis of glaucoma: extracellular matrix dysfunction in the trabecular meshwork - a review. Clin Exp Ophthalmol. 2022;50(2):163-182.
Wang K, Read AT, Sulchek T, Ethier CR. Trabecular meshwork stiffness in glaucoma. Exp Eye Res. 2017;158:3-12.
Coulon SJ, Schuman JS, Du Y, Bahrani Fard MR, Ethier CR, Stamer WD. A novel glaucoma approach: stem cell regeneration of the trabecular meshwork. Prog Retin Eye Res. 2022;90:101063.
Yun H, Zhou Y, Wills A, Du Y. Stem cells in the trabecular meshwork for regulating intraocular pressure. J Ocul Pharmacol Ther. 2016;32(5):253-260.
Du Y, Roh DS, Mann MM, Funderburgh ML, Funderburgh JL, Schuman JS. Multipotent stem cells from trabecular meshwork become phagocytic TM cells. Invest Ophthalmol Vis Sci. 2012;53(3):1566-1575.
Kumar A, Xu Y, Du Y. Stem cells from human trabecular meshwork hold the potential to develop into ocular and non-ocular lineages after long-term storage. Stem Cells Dev. 2020;29(1):49-61.
Zhang Y, Cai S, Tseng SCG, Zhu YT. Isolation and expansion of multipotent progenitors from human trabecular meshwork. Sci Rep. 2018;8(1):2814.
Nadri S, Yazdani S, Arefian E, et al. Mesenchymal stem cells from trabecular meshwork become photoreceptor-like cells on amniotic membrane. Neurosci Lett. 2013;541:43-48.
Tay CY, Sathiyanathan P, Chu SW, Stanton LW, Wong TT. Identification and characterization of mesenchymal stem cells derived from the trabecular meshwork of the human eye. Stem Cells Dev. 2012;21(9):1381-1390.
Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. Jama. 2014;311(18):1901-1911.
Sunaric Megevand G, Bron AM. Personalising surgical treatments for glaucoma patients. Prog Retin Eye Res. 2021;81:100879.
Pearson C, Martin K. Stem cell approaches to glaucoma: from aqueous outflow modulation to retinal neuroprotection. Prog Brain Res. 2015;220:241-256.
Du Y, Yun H, Yang E, Schuman JS. Stem cells from trabecular meshwork home to TM tissue in vivo. Invest Ophthalmol Vis Sci. 2013;54(2):1450-1459.
Wang K, Pierscionek BK. Biomechanics of the human lens and accommodative system: functional relevance to physiological states. Prog Retin Eye Res. 2019;71:114-131.
Bassnett S, Sikic H. The lens growth process. Prog Retin Eye Res. 2017;60:181-200.
Colitz CM, Davidson MG, Mc GM. Telomerase activity in lens epithelial cells of normal and cataractous lenses. Exp Eye Res. 1999;69(6):641-649.
Oka M, Toyoda C, Kaneko Y, Nakazawa Y, Aizu-Yokota E, Takehana M. Characterization and localization of side population cells in the lens. Mol Vis. 2010;16:945-953.
Gwon A. Lens regeneration in mammals: a review. Surv Ophthalmol. 2006;51(1):51-62.
Lin H, Ouyang H, Zhu J, et al. Lens regeneration using endogenous stem cells with gain of visual function. Nature. 2016;531(7594):323-328.
Trevor-Roper PD. Cataracts. Br Med J. 1970;3(5713):33-35.
Asbell PA, Dualan I, Mindel J, Brocks D, Ahmad M, Epstein S. Age-related cataract. Lancet. 2005;365(9459):599-609.
Liu YC, Wilkins M, Kim T, Malyugin B, Mehta JS. Cataracts. Lancet. 2017;390(10094):600-612.
Kuriakose T. Examination of iris and pupil. In: Clinical insights and examination techniques in ophthalmology. Springer; 2020:133-141.
Luesma MJ, Gherghiceanu M, Popescu LM. Telocytes and stem cells in limbus and uvea of mouse eye. J Cell Mol Med. 2013;17(8):1016-1024.
Vrapciu AD, Rusu MC, Leonardi R, Corbu CG. Stem potentialities of the human iris - an in situ immunohistochemical study. Acta Histochem. 2014;116(8):1509-1513.
Froen RC, Johnsen EO, Petrovski G, et al. Pigment epithelial cells isolated from human peripheral iridectomies have limited properties of retinal stem cells. Acta Ophthalmol. 2011;89(8):e635-e644.
Asami M, Sun G, Yamaguchi M, Kosaka M. Multipotent cells from mammalian iris pigment epithelium. Dev Biol. 2007;304(1):433-446.
Matsushita T, Fujihara A, Royall L, Kagiwada S, Kosaka M, Araki M. Immediate differentiation of neuronal cells from stem/progenitor-like cells in the avian iris tissues. Exp Eye Res. 2014;123:16-26.
Royall LN, Lea D, Matsushita T, Takeda TA, Taketani S, Araki M. A novel culture method reveals unique neural stem/progenitors in mature porcine iris tissues that differentiate into neuronal and rod photoreceptor-like cells. Brain Res. 2017;1675:51-60.
Aisenbrey S, Lafaut BA, Szurman P, et al. Iris pigment epithelial translocation in the treatment of exudative macular degeneration: a 3-year follow-up. Arch Ophthalmol. 2006;124(2):183-188.
Hidalgo-Alvarez V, Dhowre HS, Kingston OA, Sheridan CM, Levis HJ. Biofabrication of artificial stem cell niches in the anterior ocular segment. Bioengineering (Basel). 2021;8(10):135.
Xu H, Sta Iglesia DD, Kielczewski JL, et al. Characteristics of progenitor cells derived from adult ciliary body in mouse, rat, and human eyes. Invest Ophthalmol Vis Sci. 2007;48(4):1674-1682.
Jasty S, Suriyanarayanan S, Krishnakumar S. Influence of self-assembling peptide nanofibre scaffolds on retinal differentiation potential of stem/progenitor cells derived from ciliary pigment epithelial cells. J Tissue Eng Regen Med. 2017;11(2):509-518.
Coles BL, Angénieux B, Inoue T, et al. Facile isolation and the characterization of human retinal stem cells. Proc Natl Acad Sci U S A. 2004;101(44):15772-15777.
Froen R, Johnsen EO, Nicolaissen B, Facsko A, Petrovski G, Moe MC. Does the adult human ciliary body epithelium contain "true" retinal stem cells? Biomed Res Int. 2013;2013:1-7.
Moe MC, Kolberg RS, Sandberg C, et al. A comparison of epithelial and neural properties in progenitor cells derived from the adult human ciliary body and brain. Exp Eye Res. 2009;88(1):30-38.
Cicero SA, Johnson D, Reyntjens S, et al. Cells previously identified as retinal stem cells are pigmented ciliary epithelial cells. Proc Natl Acad Sci U S A. 2009;106(16):6685-6690.
Gualdoni S, Baron M, Lakowski J, et al. Adult ciliary epithelial cells, previously identified as retinal stem cells with potential for retinal repair, fail to differentiate into new rod photoreceptors. Stem Cells. 2010;28(6):1048-1059.
Kohno R, Ikeda Y, Yonemitsu Y, et al. Sphere formation of ocular epithelial cells in the ciliary body is a reprogramming system for neural differentiation. Brain Res. 2006;1093(1):54-70.
Hoon M, Okawa H, Della Santina L, Wong RO. Functional architecture of the retina: development and disease. Prog Retin Eye Res. 2014;42:44-84.
Fischer AJ, Bosse JL, El-Hodiri HM. The ciliary marginal zone (CMZ) in development and regeneration of the vertebrate eye. Exp Eye Res. 2013;116:199-204.
Achberger K, Haderspeck JC, Kleger A, Liebau S. Stem cell-based retina models. Adv Drug Deliv Rev. 2019;140:33-50.
Bhatia B, Singhal S, Lawrence JM, Khaw PT, Limb GA. Distribution of Muller stem cells within the neural retina: evidence for the existence of a ciliary margin-like zone in the adult human eye. Exp Eye Res. 2009;89(3):373-382.
Johnsen EO, Froen RC, Olstad OK, et al. Proliferative cells isolated from the adult human peripheral retina only transiently upregulate key retinal markers upon induced differentiation. Curr Eye Res. 2018;43(3):340-349.
Reichenbach A, Bringmann A. New functions of muller cells. Glia. 2013;61(5):651-678.
Lenkowski JR, Raymond PA. Muller glia: stem cells for generation and regeneration of retinal neurons in teleost fish. Prog Retin Eye Res. 2014;40:94-123.
Lawrence JM, Singhal S, Bhatia B, et al. MIO-M1 cells and similar muller glial cell lines derived from adult human retina exhibit neural stem cell characteristics. Stem Cells. 2007;25(8):2033-2043.
Becker S, Eastlake K, Jayaram H, et al. Allogeneic transplantation of muller-derived retinal ganglion cells improves retinal function in a feline model of ganglion cell depletion. Stem Cells Transl Med. 2016;5(2):192-205.
Jayaram H, Jones MF, Eastlake K, et al. Transplantation of photoreceptors derived from human muller glia restore rod function in the P23H rat. Stem Cells Transl Med. 2014;3(3):323-333.
Rizzolo LJ, Peng S, Luo Y, Xiao W. Integration of tight junctions and claudins with the barrier functions of the retinal pigment epithelium. Prog Retin Eye Res. 2011;30(5):296-323.
Salero E, Blenkinsop TA, Corneo B, et al. Adult human RPE can be activated into a multipotent stem cell that produces mesenchymal derivatives. Cell Stem Cell. 2012;10(1):88-95.
Davis RJ, Blenkinsop TA, Campbell M, et al. Human RPE stem cell-derived RPE preserves photoreceptors in the Royal College of surgeons rat: method for quantifying the area of photoreceptor sparing. J Ocul Pharmacol Ther. 2016;32(5):304-309.
Davis RJ, Alam NM, Zhao C, et al. The developmental stage of adult human stem cell-derived retinal pigment epithelium cells influences transplant efficacy for vision rescue. Stem Cell Rep. 2017;9(1):42-49.
Clinical Trials.gov. https://classic.clinicaltrials.gov/ct2/show/NCT04627428.
Osakada F, Ikeda H, Mandai M, et al. Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat Biotechnol. 2008;26(2):215-224.
Kawasaki H, Suemori H, Mizuseki K, et al. Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc Natl Acad Sci U S A. 2002;99(3):1580-1585.
Haruta M, Sasai Y, Kawasaki H, et al. In vitro and in vivo characterization of pigment epithelial cells differentiated from primate embryonic stem cells. Invest Ophthalmol Vis Sci. 2004;45(3):1020-1025.
Wu YR, Hashiguchi T, Sho J, Chiou SH, Takahashi M, Mandai M. Transplanted mouse embryonic stem cell-derived retinal ganglion cells integrate and form synapses in a retinal ganglion cell-depleted mouse model. Invest Ophthalmol Vis Sci. 2021;62(13):26.
Kuwahara A, Ozone C, Nakano T, Saito K, Eiraku M, Sasai Y. Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue. Nat Commun. 2015;6:6286.
Volkner M, Zschatzsch M, Rostovskaya M, et al. Retinal organoids from pluripotent stem cells efficiently recapitulate Retinogenesis. Stem Cell Rep. 2016;6(4):525-538.
Saha A, Capowski E, Fernandez Zepeda MA, Nelson EC, Gamm DM, Sinha R. Cone photoreceptors in human stem cell-derived retinal organoids demonstrate intrinsic light responses that mimic those of primate fovea. Cell Stem Cell. 2022;29(3):460-471.
Li K, Zhong X, Yang S, et al. HiPSC-derived retinal ganglion cells grow dendritic arbors and functional axons on a tissue-engineered scaffold. Acta Biomater. 2017;54:117-127.
He X-Y, Zhao C-J, Xu H, et al. Synaptic repair and vision restoration in advanced degenerating eyes by transplantation of retinal progenitor cells. Stem Cell Rep. 2021;16(7):1805-1817.
Mandai M, Watanabe A, Kurimoto Y, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med. 2017;376(11):1038-1046.
Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385(9967):509-516.
Liu Y, Chen SJ, Li SY, et al. Long-term safety of human retinal progenitor cell transplantation in retinitis pigmentosa patients. Stem Cell Res Ther. 2017;8(1):209.
Kuriyan AE, Albini TA, Townsend JH, et al. Vision loss after intravitreal injection of autologous "stem cells" for AMD. N Engl J Med. 2017;376(11):1047-1053.
Leung EH, Flynn HW Jr, Albini TA, Medina CA. Retinal detachment after subretinal stem cell transplantation. Ophthalmic Surg Lasers Imaging Retina. 2016;47(6):600-601.
Pardue MT, Allen RS. Neuroprotective strategies for retinal disease. Prog Retin Eye Res. 2018;65:50-76.
Voisin A, Penaguin A, Gaillard A, Leveziel N. Stem cell therapy in retinal diseases. Neural Regen Res. 2023;18(7):1478-1485.
Mead B, Tomarev S. Extracellular vesicle therapy for retinal diseases. Prog Retin Eye Res. 2020;79:100849.
Brinks J, van Dijk EHC, Klaassen I, et al. Exploring the choroidal vascular labyrinth and its molecular and structural roles in health and disease. Prog Retin Eye Res. 2022;87:100994.
Arsenijevic Y, Taverney N, Kostic C, et al. Non-neural regions of the adult human eye: a potential source of neurons? Invest Ophthalmol Vis Sci. 2003;44(2):799-807.
Wakabayashi T, Naito H, Iba T, Nishida K, Takakura N. Identification of CD157-positive vascular endothelial stem cells in mouse retinal and choroidal vessels: fluorescence-activated cell sorting analysis. Invest Ophthalmol Vis Sci. 2022;63(4):5.
Alexander N, Walshe J, Richardson NA, et al. Stromal cells cultivated from the choroid of human eyes display a mesenchymal stromal cell (MSC) phenotype and inhibit the proliferation of choroidal vascular endothelial cells in vitro. Exp Eye Res. 2020;200:108201.
Boote C, Sigal IA, Grytz R, Hua Y, Nguyen TD, Girard MJA. Scleral structure and biomechanics. Prog Retin Eye Res. 2020;74:100773.
Tsai CL, Wu PC, Fini ME, Shi S. Identification of multipotent stem/progenitor cells in murine sclera. Invest Ophthalmol Vis Sci. 2011;52(8):5481-5487.
Chen K, Zhou Y, Sheng M, Li M. Culture and identification of multipotent stem cells in Guinea pig sclera. Int Ophthalmol. 2023;43(1):113-120.
Wu PC, Tsai CL, Gordon GM, et al. Chondrogenesis in scleral stem/progenitor cells and its association with form-deprived myopia in mice. Mol Vis. 2015;21:138-147.
Gipson IK. Goblet cells of the conjunctiva: a review of recent findings. Prog Retin Eye Res. 2016;54:49-63.
Boulton M, Albon J. Stem cells in the eye. Int J Biochem Cell Biol. 2004;36(4):643-657.
Stewart RM, Sheridan CM, Hiscott PS, Czanner G, Kaye SB. Human conjunctival stem cells are predominantly located in the medial canthal and inferior Forniceal areas. Invest Ophthalmol Vis Sci. 2015;56(3):2021-2030.
Qi H, Zheng X, Yuan X, Pflugfelder SC, Li DQ. Potential localization of putative stem/progenitor cells in human bulbar conjunctival epithelium. J Cell Physiol. 2010;225(1):180-185.
Rosellini A, Papini S, Giannarini C, Nardi M, Revoltella RP. Human conjunctival epithelial precursor cells and their progeny in 3D organotypic culture. Int J Dev Biol. 2007;51(8):739-743.
Gregory DG. New grading system and treatment guidelines for the acute ocular manifestations of Stevens-Johnson syndrome. Ophthalmology. 2016;123(1658):1653-1658.
Dua HS, Miri A, Elalfy MS, Lencova A, Said DG. Amnion-assisted conjunctival epithelial redirection in limbal stem cell grafting. Br J Ophthalmol. 2016;101:913-919.
Wu N, Yan C, Chen J, et al. Conjunctival reconstruction via enrichment of human conjunctival epithelial stem cells by p75 through the NGF-p75-SALL2 signaling axis. Stem Cells Transl Med. 2020;9(11):1448-1461.
Nadri S, Soleimani M, Kiani J, Atashi A, Izadpanah R. Multipotent mesenchymal stem cells from adult human eye conjunctiva stromal cells. Differentiation. 2008;76(3):223-231.
Soleimanifar F, Mortazavi Y, Nadri S, Islami M, Vakilian S. Coculture of conjunctiva derived mesenchymal stem cells (CJMSCs) and corneal epithelial cells to reconstruct the corneal epithelium. Biologicals. 2018;54:39-43.
Soleimanifar F, Mortazavi Y, Nadri S, Soleimani M. Conjunctiva derived mesenchymal stem cell (CJMSCs) as a potential platform for differentiation into corneal epithelial cells on bioengineered electrospun scaffolds. J Biomed Mater Res A. 2017;105(10):2703-2711.
Nasehi F, Karshenas M, Nadri S, Barati G, Salim A. Core-shell fibrous scaffold as a vehicle for sustained release of retinal pigmented epithelium-derived factor (PEDF) for photoreceptor differentiation of conjunctiva mesenchymal stem cells. J Biomed Mater Res A. 2017;105(12):3514-3519.
Blanpain C, Fuchs E. Epidermal stem cells of the skin. Annu Rev Cell Dev Biol. 2006;22:339-373.
Guo Y, Ma X, Wu W, et al. Coordinated microRNA/mRNA expression profiles reveal a putative mechanism of corneal epithelial cell transdifferentiation from skin epidermal stem cells. Int J Mol Med. 2018;41(2):877-887.
Lu R, Zhang X, Huang D, et al. Conjunctival reconstruction with progenitor cell-derived autologous epidermal sheets in rhesus monkey. PloS One. 2011;6(11):e25713.
Myung P, Ito M. Dissecting the bulge in hair regeneration. J Clin Invest. 2012;122(2):448-454.
Lavker RM, Sun TT, Oshima H, et al. Hair follicle stem cells. J Investig Dermatol Symp Proc. 2003;8(1):28-38.
Meyer-Blazejewska EA, Call MK, Yamanaka O, et al. From hair to cornea: toward the therapeutic use of hair follicle-derived stem cells in the treatment of limbal stem cell deficiency. Stem Cells. 2011;29(1):57-66.
Olszewski C, Maassen J, Guenther R, Skazik-Voogt C, Gutermuth A. Mechanotransductive differentiation of hair follicle stem cells derived from aged eyelid skin into corneal endothelial-like cells. Stem Cell Rev Rep. 2022;18(5):1668-1685.
Paus R, Burgoa I, Platt CI, Griffiths T, Poblet E, Izeta A. Biology of the eyelash hair follicle: an enigma in plain sight. Br J Dermatol. 2016;174(4):741-752.
Thibaut S, De Becker E, Caisey L, et al. Human eyelash characterization. Br J Dermatol. 2010;162(2):304-310.
Esteban A, Traba A, Prieto J. Eyelid movements in health and disease. The supranuclear impairment of the palpebral motility. Neurophysiol Clin. 2004;34(1):3-15.
Salemi S, Prange JA, Baumgartner V, Mohr-Haralampieva D, Eberli D. Adult stem cell sources for skeletal and smooth muscle tissue engineering. Stem Cell Res Ther. 2022;13(1):156.
Liu G, Liao C, Chen X, Wu Y. In vitro and in vivo osteogenesis of human orbicularis oculi muscle-derived stem cells. Tissue Eng Regen Med. 2018;15(4):445-452.
Liu G, Liao C, Chen X, et al. Identification and characterization of skeletal muscle stem cells from human orbicularis oculi muscle. Tissue Eng Part C Methods. 2018;24(8):486-493.
Phan MAT, Madigan MC, Stapleton F, Willcox M, Golebiowski B. Human meibomian gland epithelial cell culture models: current progress, challenges, and future directions. Ocul Surf. 2022;23:96-113.
Knop E, Knop N, Millar T, Obata H, Sullivan DA. The international workshop on meibomian gland dysfunction: report of the subcommittee on anatomy, physiology, and pathophysiology of the meibomian gland. Invest Ophthalmol Vis Sci. 2011;52(4):1938-1978.
Parfitt GJ, Lewis PN, Young RD, et al. Renewal of the holocrine meibomian glands by label-retaining, unipotent epithelial progenitors. Stem Cell Rep. 2016;7(3):399-410.
Xie HT, Sullivan DA, Chen D, Hatton MP, Kam WR, Liu Y. Biomarkers for progenitor and differentiated epithelial cells in the human meibomian gland. Stem Cells Transl Med. 2018;7(12):887-892.
Bron AJ, de Paiva CS, Chauhan SK, et al. TFOS DEWS II pathophysiology report. Ocul Surf. 2017;15(3):438-510.
Veernala I, Jaffet J, Fried J, et al. Lacrimal gland regeneration: the unmet challenges and promise for dry eye therapy. Ocul Surf. 2022;25:129-141.
Zoukhri D, Macari E, Kublin CL. A single injection of interleukin-1 induces reversible aqueous-tear deficiency, lacrimal gland inflammation, and acinar and ductal cell proliferation. Exp Eye Res. 2007;84(5):894-904.
Lin H, Liu Y, Yiu S. Three dimensional culture of potential epithelial progenitor cells in human lacrimal gland. Transl Vis Sci Technol. 2019;8(4):32.
Gromova A, Voronov DA, Yoshida M, et al. Lacrimal gland repair using progenitor cells. Stem Cells Transl Med. 2016;6:88-98.
Shatos MA, Haugaard-Kedstrom L, Hodges RR, Dartt DA. Isolation and characterization of progenitor cells in uninjured, adult rat lacrimal gland. Invest Ophthalmol Vis Sci. 2012;53(6):2749-2759.
You S, Avidan O, Tariq A, et al. Role of epithelial-mesenchymal transition in repair of the lacrimal gland after experimentally induced injury. Invest Ophthalmol Vis Sci. 2012;53(1):126-135.
Massie I, Spaniol K, Barbian A, Geerling G, Metzger M, Schrader S. Development of lacrimal gland spheroids for lacrimal gland tissue regeneration. J Tissue Eng Regen Med. 2018;12(4):e2001-e2009.
You S, Kublin CL, Avidan O, Miyasaki D, Zoukhri D. Isolation and propagation of mesenchymal stem cells from the lacrimal gland. Invest Ophthalmol Vis Sci. 2011;52(5):2087-2094.
Dietrich J, Roth M, Konig S, Geerling G, Mertsch S, Schrader S. Analysis of lacrimal gland derived mesenchymal stem cell secretome and its impact on epithelial cell survival. Stem Cell Res. 2019;38:101477.
Ho JH, Ma WH, Tseng TC, Chen YF, Chen MH, Lee OK. Isolation and characterization of multi-potent stem cells from human orbital fat tissues. Tissue Eng Part A. 2011;17(1-2):255-266.
Chen SY, Mahabole M, Horesh E, Wester S, Goldberg JL, Tseng SC. Isolation and characterization of mesenchymal progenitor cells from human orbital adipose tissue. Invest Ophthalmol Vis Sci. 2014;55(8):4842-4852.
Lin KJ, Loi MX, Lien GS, et al. Topical administration of orbital fat-derived stem cells promotes corneal tissue regeneration. Stem Cell Res Ther. 2013;4(3):72.
Sun P, Shen L, Zhang C, Du L, Wu X. Promoting the expansion and function of human corneal endothelial cells with an orbital adipose-derived stem cell-conditioned medium. Stem Cell Res Ther. 2017;8(1):287.
Sun P, Shen L, Li YB, Du LQ, Wu XY. Long-term observation after transplantation of cultured human corneal endothelial cells for corneal endothelial dysfunction. Stem Cell Res Ther. 2022;13(1):228.
Krief B, Algor SW, Nakdimon I, et al. Retinal lineage therapeutic specific effect of human orbital and abdominal adipose-derived mesenchymal stem cells. Stem Cells Int. 2021;2021:7022247.
Lee SG, Yang JW, Park SG, Yang YI. Effect of stem cells and fibrin concentration on the vascularization of the Medpor orbital implant. Clin Exp Ophthalmol. 2010;38(9):885-891. - Contributed Indexing: Keywords: adult stem cells; eye diseases; regeneration; stem cells; treatment
- الموضوع: Date Created: 20240112 Date Completed: 20240311 Latest Revision: 20240311
- الموضوع: 20250114
- الرقم المعرف: 10.1111/ceo.14309
- الرقم المعرف: 38214071
- المصدر:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login

حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.