Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

The follicle-stimulating hormone triggers rapid changes in mitochondrial structure and function in porcine cumulus cells.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      Oocyte maturation is a key process during which the female germ cell undergoes resumption of meiosis and completes its preparation for embryonic development including cytoplasmic and epigenetic maturation. The cumulus cells directly surrounding the oocyte are involved in this process by transferring essential metabolites, such as pyruvate, to the oocyte. This process is controlled by cyclic adenosine monophosphate (cAMP)-dependent mechanisms recruited downstream of follicle-stimulating hormone (FSH) signaling in cumulus cells. As mitochondria have a critical but poorly understood contribution to this process, we defined the effects of FSH and high cAMP concentrations on mitochondrial dynamics and function in porcine cumulus cells. During in vitro maturation (IVM) of cumulus-oocyte complexes (COCs), we observed an FSH-dependent mitochondrial elongation shortly after stimulation that led to mitochondrial fragmentation 24 h later. Importantly, mitochondrial elongation was accompanied by decreased mitochondrial activity and a switch to glycolysis. During a pre-IVM culture step increasing intracellular cAMP, mitochondrial fragmentation was prevented. Altogether, the results demonstrate that FSH triggers rapid changes in mitochondrial structure and function in COCs involving cAMP.
      (© 2024. The Author(s).)
    • References:
      Eppig, J. J. Coordination of nuclear and cytoplasmic oocyte maturation in eutherian mammals. Reprod. Fertil. Dev. 8, 485–489 (1996). (PMID: 10.1071/RD99604858870074)
      Macaulay, A. D. et al. The gametic synapse: RNA transfer to the bovine oocyte. Biol. Reprod. 91, 90 (2014). (PMID: 10.1095/biolreprod.114.11986725143353)
      Santiquet, N. W., Develle, Y., Laroche, A., Robert, C. & Richard, F. J. Regulation of gap-junctional communication between cumulus cells during in vitro maturation in swine, a gap-FRAP study. Biol. Reprod. 87, 46 (2012). (PMID: 10.1095/biolreprod.112.09975422649071)
      Sasseville, M. et al. Regulation of gap junctions in porcine cumulus-oocyte complexes: contributions of granulosa cell contact, gonadotropins, and lipid rafts. Mol. Endocrinol. 23, 700–710 (2009). (PMID: 10.1210/me.2008-0320192287925419259)
      Gilchrist, R. B. & Smitz, J. Oocyte in vitro maturation: Physiological basis and application to clinical practice. Fertil. Steril. 119, 524–539 (2023). (PMID: 10.1016/j.fertnstert.2023.02.01036804961)
      Wang, Q., Frolova, A. I., Purcell, S., Adastra, K. & Schoeller, E. Mitochondrial dysfunction and apoptosis in cumulus cells of type I diabetic mice. PLoS ONE 5, 15901 (2010). (PMID: 10.1371/journal.pone.0015901)
      Tilokani, L., Nagashima, S., Paupe, V. & Prudent, J. Mitochondrial dynamics: Overview of molecular mechanisms. Essays Biochem. 62, 341–360 (2018). (PMID: 10.1042/EBC20170104300303646056715)
      Ramírez, S. et al. Mitochondrial dynamics mediated by mitofusin 1 is required for POMC neuron glucose-sensing and insulin release control. Cell Metab. 25, 1390–1399 (2017). (PMID: 10.1016/j.cmet.2017.05.01028591639)
      Mozdy, A. D., Mccaffery, J. M. & Shaw, J. M. Dnm1p GTPase-mediated mitochondrial fission Is a multi-step process requiring the novel integral membrane component Fis1p. J. Cell Biol. 151, 367–379 (2000). (PMID: 10.1083/jcb.151.2.367110381832192649)
      Chen, H. et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 160, 189–200 (2003). (PMID: 10.1083/jcb.200211046125277532172648)
      Olichon, L. et al. The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett. 523, 171–176 (2002). (PMID: 10.1016/S0014-5793(02)02985-X12123827)
      Eisner, V., Picard, M. & Hajnóczky, G. Mitochondrial dynamics in adaptive and maladaptive cellular stress responses. Nat. Cell Biol. 20, 755–765 (2018). (PMID: 10.1038/s41556-018-0133-0299505716716149)
      Zhang, H. et al. DRP1 deficiency induces mitochondrial dysfunction and oxidative stress-mediated apoptosis during porcine oocyte maturation. J. Anim. Sci. Biotechnol. 11, 1–10 (2020). (PMID: 10.1186/s40104-020-00489-4)
      Adriaens, I., Cortvrindt, R. & Smitz, J. Differential FSH exposure in preantral follicle culture has marked effects on folliculogenesis and oocyte developmental competence. Hum. Reprod. 19, 398–408 (2004). (PMID: 10.1093/humrep/deh07414747188)
      Sirard, M. A., Desrosier, S. & Assidi, M. In vivo and in vitro effects of FSH on oocyte maturation and developmental competence. Theriogenology 68, S71–S76 (2007). (PMID: 10.1016/j.theriogenology.2007.05.05317588652)
      Hillier, S. G. Gonadotropic control of ovarian follicular growth and development. Mol. Cell. Endocrinol. 179, 39–46 (2001). (PMID: 10.1016/S0303-7207(01)00469-511420129)
      Eppig, J. J. Regulation of cumulus oophorus expansion by gonadotropins in vivo and in vitro. Biol Reprod 23, 545–552 (1980). (PMID: 10.1095/biolreprod23.3.5456778513)
      Córdova, B., Morató, R., Izquierdo, D., Paramio, T. & Mogas, T. Effect of the addition of insulin-transferrin-selenium and/or L-ascorbic acid to the in vitro maturation of prepubertal bovine oocytes on cytoplasmic maturation and embryo development. Theriogenology 74, 1341–1348 (2010). (PMID: 10.1016/j.theriogenology.2010.06.00320688373)
      Tian, H. et al. Enhancing the developmental competence of prepubertal lamb oocytes by supplementing the in vitro maturation medium with sericin and the fibroblast growth factor 2—Leukemia inhibitory factor—Insulin-like growth factor 1 combination. Theriogenology 159, 13–19 (2021). (PMID: 10.1016/j.theriogenology.2020.10.01933113439)
      Ali, A. & Sirard, M. A. The effects of 17beta-estradiol and protein supplement on the response to purified and recombinant follicle stimulating hormone in bovine oocytes. Zygote 10, 65–71 (2002). (PMID: 10.1017/S096719940200209511964093)
      Ali, A., Benkhalifa, M. & Miron, P. In-vitro maturation of oocytes: Biological aspects. Reprod. Biomed. Online 13, 437–446 (2006). (PMID: 10.1016/S1472-6483(10)61450-216984779)
      Van Tol, H. T. A., Van Eijk, M. J. T., Mummery, C. L., Van Den Hurk, R. & Bevers, M. M. Influence of FSH and hGC on the resumption of meiosis of bovine oocytes surrounded by cumulus cells connected to membrana granulosa. Mol. Reprod. Dev. 45, 218–224 (1996). (PMID: 10.1002/(SICI)1098-2795(199610)45:2<218::AID-MRD15>3.0.CO;2-X8914080)
      Assidi, M., Richard, F. J. & Sirard, M. A. FSH in vitro versus LH in vivo: similar genomic effects on the cumulus. J. Ovarian Res. 6, 68 (2013). (PMID: 10.1186/1757-2215-6-68240669453852229)
      Gilchrist, R. B. et al. Oocyte maturation and quality: Role of cyclic nucleotides. Reproduction 152, R143–R157 (2016). (PMID: 10.1530/REP-15-060627422885)
      Cho, W. K., Stern, S. & Biggers, J. D. Inhibitory effect of dibutyryl cAMP on mouse oocyte maturation in vitro. J. Exp. Zool. 187, 383–386 (1974). (PMID: 10.1002/jez.14018703074362350)
      Lounas, A. et al. A 3D analysis revealed complexe mitochondria morphologies in porcine cumulus cells. Sci. Rep. 12, 1–10 (2022). (PMID: 10.1038/s41598-022-19723-2)
      Distelmaier, F. et al. Life cell quantification of mitochondrial membrane potential at the single organelle level. Cytom. Part A 73, 129–138 (2008). (PMID: 10.1002/cyto.a.20503)
      Ouellet, M., Guillebaud, G., Gervais, V., Lupien St-Pierre, D. & Germain, M. A novel algorithm identifies stress-induced alterations in mitochondrial connectivity and inner membrane structure from confocal images. PLoS Comput. Biol. 13, e1005612 (2017). (PMID: 10.1371/journal.pcbi.1005612286408145501662)
      Shimada, M. & Terada, T. FSH and LH induce progesterone production and progesterone receptor synthesis in cumulus cells: a requirement for meiotic resumption in porcine oocytes. Mol. Hum. Reprod. 8, 612–618 (2002). (PMID: 10.1093/molehr/8.7.61212087075)
      Cantanhêde, L. F. et al. Follicle-stimulating hormone mediates the consumption of serum-derived glycogen by bovine cumulus-oocyte complexes during in vitro maturation. Vet. World 14, 2512–2517 (2021). (PMID: 10.14202/vetworld.2021.2512-2517348404728613776)
      Lounas, A., Vernoux, N., Germain, M., Tremblay, M.-E. & Richard, F. J. Mitochondrial sub-cellular localization of cAMP-specific phosphodiesterase 8A in ovarian follicular cells. Sci. Rep. 9, 12493 (2019). (PMID: 10.1038/s41598-019-48886-8314626946713761)
      Gomes, L. C., Benedetto, G. D. & Scorrano, L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 13, 589–598 (2011). (PMID: 10.1038/ncb2220214788573088644)
      Wu, M. et al. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am. J. Physiol. Cell Physiol. 292, 125–136 (2007). (PMID: 10.1152/ajpcell.00247.2006)
      Demers-Lamarche, J. et al. Loss of mitochondrial function impairs lysosomes. J. Biol. Chem. 291, 10263–10276 (2016). (PMID: 10.1074/jbc.M115.695825269879024858975)
      Meng, H. et al. Loss of Parkinson’s disease-associated protein CHCHD2 affects mitochondrial crista structure and destabilizes cytochrome c. Nat. Commun. 8, 1–18 (2017). (PMID: 10.1038/ncomms15500)
      Afzal, N., Lederer, W. J., Jafri, M. S. & Mannella, C. A. Effect of crista morphology on mitochondrial ATP output: A computational study. Curr. Res. Physiol. 4, 163–176 (2021). (PMID: 10.1016/j.crphys.2021.03.005343961538360328)
      Nielsen, J. et al. Plasticity in mitochondrial cristae density allows metabolic capacity modulation in human skeletal muscle. Authors. J. Physiol. C 595, 2839–2847 (2017).
      Sasseville, M., Côté, N., Guillemette, C. & Richard, F. J. New insight into the role of phosphodiesterase 3A in porcine oocyte maturation. BMC Dev. Biol. 6, 47 (2006). (PMID: 10.1186/1471-213X-6-47170381721617088)
      Sasseville, M. et al. Characterization of novel phosphodiesterases in the bovine ovarian follicle. Biol. Reprod. 81, 415–425 (2009). (PMID: 10.1095/biolreprod.108.074450193573672849824)
      Bilodeau, S., Fortier, M. A. & Sirard, M. A. Effect of adenylate cyclase stimulation on meiotic resumption and cyclic AMP content of zona-free and cumulus-enclosed bovine oocytes in vitro. J. Reprod. Fertil. 97, 5–11 (1993). (PMID: 10.1530/jrf.0.09700057681878)
      Albuz, F. K. et al. Simulated physiological oocyte maturation (SPOM): a novel in vitro maturation system that substantially improves embryo yield and pregnancy outcomes. Hum. Reprod. 25, 2999–3011 (2010). (PMID: 10.1093/humrep/deq24620870682)
      McBride, H. M., Neuspiel, M. & Wasiak, S. Mitochondria: More than just a powerhouse. Curr. Biol. 16, R551–R560 (2006). (PMID: 10.1016/j.cub.2006.06.05416860735)
      Karbowski, M. & Youle, R. J. Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ. 10, 870–880 (2003). (PMID: 10.1038/sj.cdd.440126012867994)
      Martínez-Diez, M., Santamaría, G., Ortega, A. D. & Cuezva, J. M. Biogenesis and dynamics of mitochondria during the cell cycle: significance of 39UTRs. PLoS ONE 1, 107 (2006).
      Armstrong, D. T., Xia, P., de G., G., Tekpetey, F. R. & Khamsi, F. Differential effects of insulin-like growth factor-i and follicle-stimulating hormone on proliferation and differentiation of bovine cumulus cells and granulosa cells. Biol Reprod. 54, 331–338 (1996).
      Wigglesworth, K., Lee, K. B., Emori, C., Sugiura, K. & Eppig, J. J. Transcriptomic diversification of developing cumulus and mural granulosa cells in mouse ovarian follicles. Biol. Reprod. 92, 23–24 (2015). (PMID: 10.1095/biolreprod.114.12175625376232)
      Sutton-McDowall, M. L., Gilchrist, R. B. & Thompson, J. G. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction 139, 685–695 (2010). (PMID: 10.1530/REP-09-034520089664)
      Muller, B. et al. Application of extracellular flux analysis for determining mitochondrial function in mammalian oocytes and early embryos. Sci. Rep. 9, 16778 (2019). (PMID: 10.1038/s41598-019-53066-9317279026856134)
      Yao, C. H. et al. Mitochondrial fusion supports increased oxidative phosphorylation during cell proliferation. Elife 8, e41351 (2019). (PMID: 10.7554/eLife.41351306941786351101)
      Khan, D. R., Guillemette, C., Sirard, M. A. & Richard, F. J. Characterization of FSH signalling networks in bovine cumulus cells: A perspective on oocyte competence acquisition. Mol. Hum. Reprod. 21, 688–701 (2015). (PMID: 10.1093/molehr/gav03226113519)
      Richani, D., Sutton-Mcdowall, M. L., Frank, L. A., Gilchrist, R. B. & Thompson, J. G. Effect of epidermal growth factor-like peptides on the metabolism of in vitro-matured mouse oocytes and cumulus cells. Biol. Reprod. 90, 49–50 (2014). (PMID: 10.1095/biolreprod.113.11531124451986)
      Sutton-Mcdowall, M. L., Mottershead, D. G., Gardner, D. K., Gilchrist, R. B. & Thompson, J. G. Metabolic differences in bovine cumulus-oocyte complexes matured in vitro in the presence or absence of follicle-stimulating hormone and bone morphogenetic protein 15. Biol. Reprod. 87, 1–8 (2012). (PMID: 10.1095/biolreprod.112.102061)
      Li, S., Ji, X., Wang, R. & Miao, Y. Follicle-stimulating hormone promoted pyruvate kinase isozyme type M2-induced glycolysis and proliferation of ovarian cancer cells. Gynecol. Oncolnecol. Oncol. 299, 1443–1451 (2019).
      Wen, J. et al. Effects of glucose metabolism pathways on nuclear and cytoplasmic maturation of pig oocytes. Sci. Rep. 10, 1–15 (2020). (PMID: 10.1038/s41598-020-59709-6)
      Motta, P. M., Nottola, S. A., Makabe, S., Heyn, R. & Jansen, R. Mitochondrial morphology in human fetal and adult female germ cells. Hum. Reprod. 15, 129–147 (2000). (PMID: 10.1093/humrep/15.suppl_2.12911041520)
      May-Panloup, P. et al. Mitochondries et reproduction. Med. Sci. 20, 779–783 (2004).
      Steffann, J. & Fallet, C. Mitochondria and oocyte maturation. Obs. Gynecol. Reprod. Biol. 39, 11–13 (2010). (PMID: 10.1016/S0368-2315(10)70005-3)
      Kirillova, A., Smitz, J. E. J., Sukhikh, G. T. & Mazunin, I. The role of mitochondria in oocyte maturation. Cells 10, 2484 (2021). (PMID: 10.3390/cells10092484345721338469615)
      Liu, S., Li, Y., Gao, X., Yan, J. H. & Chen, Z. J. Changes in the distribution of mitochondria before and after in vitro maturation of human oocytes and the effect of in vitro maturation on mitochondria distribution. Fertil. Steril. 93, 1550–1555 (2010). (PMID: 10.1016/j.fertnstert.2009.03.05019423101)
      Huang, C., Deng, K. & Wu, M. Mitochondrial cristae in health and disease. Int. J. Biol. Macromol. 235, 123755 (2023). (PMID: 10.1016/j.ijbiomac.2023.12375536812974)
      Podolak, A., Woclawek-Potocka, I. & Lukaszuk, K. The role of mitochondria in human fertility and early embryo development: what can we learn for clinical application of assessing and improving mitochondrial DNA. Cells 11, 797 (2022).
      Colella, M. et al. Ovarian aging: role of pituitary-ovarian axis hormones and ncRNAs in regulating ovarian mitochondrial activity. Front. Endocrinol. (Lausanne). 12, 1737 (2021).
      Dadarwal, D., Dias, F. C., Adams, G. P. & Singh, J. Effect of follicular aging on ATP content and mitochondria distribution in bovine oocytes. Theriogenology 89, 348–358 (2017). (PMID: 10.1016/j.theriogenology.2016.09.03927793457)
      Li, C. et al. FSH prevents porcine granulosa cells from hypoxia-induced apoptosis via activating mitophagy through the HIF-1α-PINK1-Parkin pathway. FASEB J. 34, 3631–3645 (2020). (PMID: 10.1096/fj.201901808RRR31960530)
      Shen, M. et al. FSH protects mouse granulosa cells from oxidative damage by repressing mitophagy. Sci. Rep. 6, 1–13 (2016). (PMID: 10.1038/srep38090)
      Dong, J., Guo, C., Yang, Z., Wu, Y. & Zhang, C. Follicle-stimulating hormone alleviates ovarian aging by modulating mitophagy-and glycophagy-based energy metabolism in hens. Cells 11, 3270–3270 (2022). (PMID: 10.3390/cells11203270362911379600712)
      Jain, A. et al. Follicle-stimulating hormone-induced rescue of cumulus cell apoptosis and enhanced development ability of buffalo oocytes. Domest. Anim. Endocrinol. 55, 74–82 (2016). (PMID: 10.1016/j.domaniend.2015.10.00726774556)
      Gilchrist, R. B. & Thompson, J. G. Oocyte maturation: emerging concepts and technologies to improve developmental potential in vitro. Theriogenology 67, 6–15 (2007). (PMID: 10.1016/j.theriogenology.2006.09.02717092551)
      Sasseville, M., Côté, N., Vigneault, C., Guillemette, C. & Richard, F. J. 3′5′-Cyclic adenosine monophosphate-dependent up-regulation of phosphodiesterase type 3A in porcine cumulus cells. Endocrinol 148, 1858–1867 (2007). (PMID: 10.1210/en.2006-1257)
      Petters, R. M. & Wells, K. D. Culture of pig embryos. J. Reprod. Fertil. Suppl. 48, 61–73 (1993). (PMID: 8145215)
      Laforest, M. F., Pouliot, É., Guéguen, L. & Richard, F. J. Fundamental significance of specific phosphodiesterases in the control of spontaneous meiotic resumption in porcine oocytes. Mol. Reprod. Dev. 70, 361–372 (2005). (PMID: 10.1002/mrd.2020315625697)
      Santiquet, N., Papillon-Dion, É., Djender, N., Guillemette, C. & Richard, F. J. New elements in the c-type natriuretic peptide signaling pathway inhibiting swine in vitro oocyte meiotic resumption. Biol. Reprod. 91, 16 (2014). (PMID: 10.1095/biolreprod.113.11413224899572)
      Turner, M. J., Sato, Y., Thomas, D. Y., Abbott-Banner, K. & Hanrahan, J. W. Phosphodiesterase 8A regulates CFTR activity in airway epithelial cells. Cell. Physiol. Biochem. 55, 784–804 (2021). (PMID: 10.33594/00000047734936285)
      Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 2012 97 9, 676–682 (2012).
      Filadi, R. et al. Mitofusin 2 ablation increases endoplasmic reticulum-mitochondria coupling. PNAS 112, E2174–E2181 (2015). (PMID: 10.1073/pnas.1504880112258702854418914)
      Pelletier, M., Billingham, L. K., Ramaswamy, M. & Siegel, R. M. Extracellular flux analysis to monitor glycolytic rates and mitochondrial oxygen consumption. Methods Enzymol. 542, 125–149 (2014). (PMID: 10.1016/B978-0-12-416618-9.00007-824862264)
    • الرقم المعرف:
      9002-68-0 (Follicle Stimulating Hormone)
      0 (Follicle Stimulating Hormone, Human)
    • الموضوع:
      Date Created: 20240103 Date Completed: 20240105 Latest Revision: 20240108
    • الموضوع:
      20240108
    • الرقم المعرف:
      PMC10764925
    • الرقم المعرف:
      10.1038/s41598-023-50586-3
    • الرقم المعرف:
      38172520