References: Hurwitz EL, Randhawa K, Yu H, Côté P, Haldeman S (2018) The Global Spine Care Initiative: a summary of the global burden of low back and neck pain studies. Eur Spine J 27(6):796–801. https://doi.org/10.1007/s00586-017-5432-9. (PMID: 10.1007/s00586-017-5432-929480409)
Bailey A (2009) Risk factors for low back pain in women: still more questions to be answered. Menopause (New York, N.Y.) 16(1):3–4. https://doi.org/10.1097/gme.0b013e31818e10a7. (PMID: 10.1097/gme.0b013e31818e10a719002014)
Bento TPF, dos Santos Genebra CV, Maciel NM, Cornelio GP, Simeão SFAP, Vitta AD (2020) Low back pain and some associated factors: is there any difference between genders? Braz J Phys Ther 24(1):79–87. https://doi.org/10.1016/j.bjpt.2019.01.012. (PMID: 10.1016/j.bjpt.2019.01.01230782429)
Hoy D et al (2012) A systematic review of the global prevalence of low back pain. Arthritis Rheum 64(6):2028–2037. https://doi.org/10.1002/art.34347. (PMID: 10.1002/art.3434722231424)
Bener A et al (2013) An epidemiologic analysis of low back pain in primary care: a hot humid country and global comparison (in eng). J Prim Care Community Health 4(3):220–227. https://doi.org/10.1177/2150131913479385. (PMID: 10.1177/215013191347938523799711)
Meucci RD, Fassa AG, Faria NMX (2015) Prevalence of chronic low back pain: systematic review, (in eng). Rev Saude Publica 49:1–1. https://doi.org/10.1590/S0034-8910.2015049005874. (PMID: 10.1590/S0034-8910.2015049005874264872934603263)
Polykoff GI, Jackson J (2020) History and Physical Examination. In: Mao J (ed) Spine Pain Care: A Comprehensive Clinical Guide. Springer International Publishing, Cham, pp 69–90. (PMID: 10.1007/978-3-030-27447-4_7)
Bhavikatti SS (2005) Introduction, in Finite element analysis. New Delhi: New Age International (P) Ltd., Publishers 1:1–8.
Rohlmann A, Zander T, Rao M, Bergmann G (2009) Realistic loading conditions for upper body bending. J Biomech 42(7):884–890. https://doi.org/10.1016/j.jbiomech.2009.01.017. (PMID: 10.1016/j.jbiomech.2009.01.01719268291)
Park WM, Kim K, Kim YH (2013) Effects of degenerated intervertebral discs on intersegmental rotations, intradiscal pressures, and facet joint forces of the whole lumbar spine. Comput Biol Med 43(9):1234–1240. https://doi.org/10.1016/j.compbiomed.2013.06.011. (PMID: 10.1016/j.compbiomed.2013.06.01123930818)
Chen S-H, Zhong Z-C, Chen C-S, Chen W-J, Hung C (2009) Biomechanical comparison between lumbar disc arthroplasty and fusion. Med Eng Phys 31(2):244–253. https://doi.org/10.1016/j.medengphy.2008.07.007. (PMID: 10.1016/j.medengphy.2008.07.00718760654)
Bruno AG, Bouxsein ML, Anderson DE (2015) Development and Validation of a Musculoskeletal Model of the Fully Articulated Thoracolumbar Spine and Rib Cage, (in eng). J Biomech Eng 137(8):081003. https://doi.org/10.1115/1.4030408. (PMID: 10.1115/1.403040825901907)
Wang W, Wang D, De Groote F, Scheys L, Jonkers I (2020) Implementation of physiological functional spinal units in a rigid-body model of the thoracolumbar spine. J Biomech 98:109437. https://doi.org/10.1016/j.jbiomech.2019.109437. (PMID: 10.1016/j.jbiomech.2019.10943731679758)
El Bojairami I, El-Monajjed K, Driscoll M (2020) Development and validation of a timely and representative finite element human spine model for biomechanical simulations. Sci Rep 10(1). https://doi.org/10.1038/s41598-020-77469-1.
Imai K, Ohnishi I, Yamamoto S, Nakamura K (2008) In vivo assessment of lumbar vertebral strength in elderly women using computed tomography-based nonlinear finite element model. Spine 33(1):27–32. https://doi.org/10.1097/BRS.0b013e31815e3993. (PMID: 10.1097/BRS.0b013e31815e399318165745)
Xu M, Yang J, Lieberman IH, Haddas R (2016) Lumbar spine finite element model for healthy subjects: development and validation, (in eng). Comput Methods Biomech Biomed Engin 20(1):1–15. https://doi.org/10.1080/10255842.2016.1193596. (PMID: 10.1080/10255842.2016.119359627315668)
Mills MJ, Sarigul-Klijn N (2019) Validation of an In Vivo Medical Image-Based Young Human Lumbar Spine Finite Element Model. J Biomech Eng 141(3). https://doi.org/10.1115/1.4042183.
Mitsuhashi N, Fujieda K, Tamura T, Kawamoto S, Takagi T, Okubo K (2009) BodyParts3D: 3D structure database for anatomical concepts," (in eng). Nucleic Acids Res 37(Database issue):D782–D785. https://doi.org/10.1093/nar/gkn613. (PMID: 10.1093/nar/gkn61318835852)
El Bojairami I, Driscoll M (2021) Correlating skeletal muscle output force and intramuscular pressure via a 3-dimensional finite element muscle model. J Biomech Eng https://doi.org/10.1115/1.4052885.
Gilsanz V, Boechat MI, Gilsanz R, Loro ML, Roe TF, Goodman WG (1994) Gender differences in vertebral sizes in adults: biomechanical implications, (in eng). Radiology 190(3):678–682. https://doi.org/10.1148/radiology.190.3.8115610. (PMID: 10.1148/radiology.190.3.81156108115610)
Cooper RG, Holli S, Jayson MIV (1992) Gender variation of human spinal and paraspinal structures. Clin Biomech 7(2):120–124. https://doi.org/10.1016/0268-0033(92)90025-Y. (PMID: 10.1016/0268-0033(92)90025-Y)
Onambélé GNL, Burgess K, Pearson SJ (2007) Gender-specific in vivo measurement of the structural and mechanical properties of the human patellar tendon. J Orthop Res 25(12):1635–1642. https://doi.org/10.1002/jor.20404. (PMID: 10.1002/jor.2040417568426)
Ebbesen EN, Thomsen JS, Beck-Nielsen H, Nepper-Rasmussen HJ, Mosekilde L (1999) Age- and gender-related differences in vertebral bone mass, density, and strength. J Bone Min Res 14(8):1394–1403. https://doi.org/10.1359/jbmr.1999.14.8.1394. (PMID: 10.1359/jbmr.1999.14.8.1394)
Stemper BD, Board D, Yoganandan N, Wolfla CE (2010) Biomechanical properties of human thoracic spine disc segments. J Craniovertebral Junction Spine 1(1):18–22. https://doi.org/10.4103/0974-8237.65477. (PMID: 10.4103/0974-8237.65477)
Keaveny TM, Yeh OC (2002) Architecture and trabecular bone - toward an improved understanding of the biomechanical effects of age, sex and osteoporosis, (in eng). J Musculoskelet Neuronal Interact 2(3):205–208. (PMID: 15758434)
Kurutz M (2010) Finite Element Modeling of the Human Lumbar Spine. Finite Element Analysis: Scyio 9:209–236.
Reilly DT, Burstein AH (1975) The elastic and ultimate properties of compact bone tissue. J Biomech 8(6):393–405. https://doi.org/10.1016/0021-9290(75)90075-5. (PMID: 10.1016/0021-9290(75)90075-51206042)
Ward SR et al (2009) Passive mechanical properties of the lumbar multifidus muscle support its role as a stabilizer, (in eng). J Biomech 42(10):1384–1389. https://doi.org/10.1016/j.jbiomech.2008.09.042. (PMID: 10.1016/j.jbiomech.2008.09.042194574912752430)
Regev GJ et al (2011) Psoas muscle architectural design, in vivo sarcomere length range, and passive tensile properties support its role as a lumbar spine stabilizer. Spine 36(26):E1666. https://doi.org/10.1097/BRS.0b013e31821847b3. (PMID: 10.1097/BRS.0b013e31821847b321415810)
El-Monajjed K, Driscoll M (2021) Investigation of reaction forces in the thoracolumbar fascia during different activities: A mechanistic numerical study. Life (Basel) 11(8):779. https://doi.org/10.3390/life11080779. (PMID: 10.3390/life1108077934440523)
Yahia LH, Pigeon P, DesRosiers EA (1993) Viscoelastic properties of the human lumbodorsal fascia. J Biomed Eng 15(5):425–429. https://doi.org/10.1016/0141-5425(93)90081-9. (PMID: 10.1016/0141-5425(93)90081-98231161)
Dvorák J, Panjabi MM, Chang DG, Theiler R, Grob D (1991) Functional radiographic diagnosis of the lumbar spine. Flexion-extension and lateral bending (in eng). Spine 16(5):562–571. https://doi.org/10.1097/00007632-199105000-00014. (PMID: 10.1097/00007632-199105000-0001420529998009657)
Wong KW, Leong JC, Chan MK, Luk KD, Lu WW (2004) The flexion-extension profile of lumbar spine in 100 healthy volunteers. Spine (Phila Pa 1976) 29(15):1636–41. https://doi.org/10.1097/01.brs.0000132320.39297.6c. (PMID: 10.1097/01.brs.0000132320.39297.6c15284509)
Dreischarf M et al (2014) Comparison of eight published static finite element models of the intact lumbar spine: Predictive power of models improves when combined together. J Biomech 47(8):1757–1766. https://doi.org/10.1016/j.jbiomech.2014.04.002. (PMID: 10.1016/j.jbiomech.2014.04.00224767702)
Takahashi I, Kikuchi S, Sato K, Sato N (2006) Mechanical load of the lumbar spine during forward bending motion of the trunk-a biomechanical study, (in eng). Spine (Phila Pa 1976) 31(1):18–23. https://doi.org/10.1097/01.brs.0000192636.69129.fb. (PMID: 10.1097/01.brs.0000192636.69129.fb16395171)
Brinckmann P, Grootenboer H (1991) Change of disc height, radial disc bulge, and intradiscal pressure from discectomy. An in vitro investigation on human lumbar discs, (in eng). Spine (Phila Pa 1976) 16(6):641–6. https://doi.org/10.1097/00007632-199106000-00008. (PMID: 10.1097/00007632-199106000-000081862403)
Ayturk UM, Puttlitz CM (2011) Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine. Comput Methods Biomech Biomed Engin 14(8):695–705. https://doi.org/10.1080/10255842.2010.493517. (PMID: 10.1080/10255842.2010.49351721229413)
Panjabi MM, Oxland TR, Yamamoto I, Crisco JJ (1994) Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves, (in eng). J Bone Joint Surg Am 76(3):413–424. https://doi.org/10.2106/00004623-199403000-00012. (PMID: 10.2106/00004623-199403000-000128126047)
Sis HL et al (2016) Effect of follower load on motion and stiffness of the human thoracic spine with intact rib cage. J Biomech 49(14):3252–3259. https://doi.org/10.1016/j.jbiomech.2016.08.003. (PMID: 10.1016/j.jbiomech.2016.08.003275450815702885)
Wilke H-J, Herkommer A, Werner K, Liebsch C (2020) In vitro Analysis of the Intradiscal Pressure of the Thoracic Spine. Front Bioeng Biotechnol 8:614. https://doi.org/10.3389/fbioe.2020.00614. (PMID: 10.3389/fbioe.2020.00614326266997311578)
American Society of Mechanical Engineers (2018) ASME V&V40 Assessing the credibility of computational modeling through verification and validation : application to medical devices. American Society of Mechanical Engineers (in English), New York.
Patwardhan AG, Havey RM, Meade KP, Lee B, Dunlap B (1999) A follower load increases the load-carrying capacity of the lumbar spine in compression, (in eng). Spine (Phila Pa 1976) 24(10):1003–9. https://doi.org/10.1097/00007632-199905150-00014. (PMID: 10.1097/00007632-199905150-0001410332793)
Nachemson A (1966) The Load on Lumbar Disks in Different Positions of the Body. Clin Orthop Relat Res 45(1):107–122. https://doi.org/10.1097/00003086-196600450-00014. (PMID: 10.1097/00003086-196600450-000145937361)
Borg-Stein J, Dugan SA (2007) Musculoskeletal disorders of pregnancy, delivery and postpartum. Phys Med Rehabil Clin N Am 18(3):459–476. https://doi.org/10.1016/j.pmr.2007.05.005. (PMID: 10.1016/j.pmr.2007.05.00517678762)
Svensson HO, Andersson GB, Hagstad A, Jansson PO (1990) The relationship of low-back pain to pregnancy and gynecologic factors. Spine 15(5):371–375. https://doi.org/10.1097/00007632-199005000-00006. (PMID: 10.1097/00007632-199005000-000062141952)
Wang S-M, Dezinno P, Maranets I, Berman MR, Caldwell-Andrews AA, Kain ZN (2004) Low back pain during pregnancy: prevalence, risk factors, and outcomes. Obstet Gynecol 104(1):65–70. https://doi.org/10.1097/01.AOG.0000129403.54061.0e. (PMID: 10.1097/01.AOG.0000129403.54061.0e15229002)
No Comments.