Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Development and evaluation of sex-specific thoracolumbar spine finite element models to study spine biomechanics.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Stott B;Stott B;Stott B; Driscoll M; Driscoll M; Driscoll M
  • المصدر:
    Medical & biological engineering & computing [Med Biol Eng Comput] 2024 Apr; Vol. 62 (4), pp. 1191-1199. Date of Electronic Publication: 2023 Dec 29.
  • نوع النشر :
    Journal Article
  • اللغة:
    English
  • معلومة اضافية
    • المصدر:
      Publisher: Springer Country of Publication: United States NLM ID: 7704869 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1741-0444 (Electronic) Linking ISSN: 01400118 NLM ISO Abbreviation: Med Biol Eng Comput Subsets: MEDLINE
    • بيانات النشر:
      Publication: New York, NY : Springer
      Original Publication: Stevenage, Eng., Peregrinus.
    • الموضوع:
    • نبذة مختصرة :
      Musculoskeletal disorders and low back pain (LBP) are common global afflictions, with a higher prevalence observed in females. However, the cause of many LBP cases continues to elude researchers. Current approaches seldom consider differences in male and female spines. Thus, this study aimed to compare the load distribution between male and female spines through finite element modeling. Two finite element models of the spine, one male and one female, were developed, inclusive of sex-specific geometry and material properties. The models consisted of the vertebrae, intervertebral discs (IVD), tendons, surrounding spinal muscles, and thoracolumbar fascia and were subjected to loading conditions simulating flexion and extension. Following extensive validation against published literature, intersegmental rotation, IVD stress, and vertebral body stress were evaluated. The female model demonstrated increased magnitudes for rotation and stresses when compared to the male model. Results suggest that the augmented stresses in the female model indicate an increased load distribution throughout the spine compared to the male model. These findings may corroborate the higher prevalence of LBP in females. This study highlights the importance of using patient- and sex-specific models for patient analyses and care.
      (© 2023. International Federation for Medical and Biological Engineering.)
    • References:
      Hurwitz EL, Randhawa K, Yu H, Côté P, Haldeman S (2018) The Global Spine Care Initiative: a summary of the global burden of low back and neck pain studies. Eur Spine J 27(6):796–801. https://doi.org/10.1007/s00586-017-5432-9. (PMID: 10.1007/s00586-017-5432-929480409)
      Bailey A (2009) Risk factors for low back pain in women: still more questions to be answered. Menopause (New York, N.Y.) 16(1):3–4. https://doi.org/10.1097/gme.0b013e31818e10a7. (PMID: 10.1097/gme.0b013e31818e10a719002014)
      Bento TPF, dos Santos Genebra CV, Maciel NM, Cornelio GP, Simeão SFAP, Vitta AD (2020) Low back pain and some associated factors: is there any difference between genders? Braz J Phys Ther 24(1):79–87. https://doi.org/10.1016/j.bjpt.2019.01.012. (PMID: 10.1016/j.bjpt.2019.01.01230782429)
      Hoy D et al (2012) A systematic review of the global prevalence of low back pain. Arthritis Rheum 64(6):2028–2037. https://doi.org/10.1002/art.34347. (PMID: 10.1002/art.3434722231424)
      Bener A et al (2013) An epidemiologic analysis of low back pain in primary care: a hot humid country and global comparison (in eng). J Prim Care Community Health 4(3):220–227. https://doi.org/10.1177/2150131913479385. (PMID: 10.1177/215013191347938523799711)
      Meucci RD, Fassa AG, Faria NMX (2015) Prevalence of chronic low back pain: systematic review, (in eng). Rev Saude Publica 49:1–1. https://doi.org/10.1590/S0034-8910.2015049005874. (PMID: 10.1590/S0034-8910.2015049005874264872934603263)
      Polykoff GI, Jackson J (2020) History and Physical Examination. In: Mao J (ed) Spine Pain Care: A Comprehensive Clinical Guide. Springer International Publishing, Cham, pp 69–90. (PMID: 10.1007/978-3-030-27447-4_7)
      Bhavikatti SS (2005) Introduction, in Finite element analysis. New Delhi: New Age International (P) Ltd., Publishers 1:1–8.
      Rohlmann A, Zander T, Rao M, Bergmann G (2009) Realistic loading conditions for upper body bending. J Biomech 42(7):884–890. https://doi.org/10.1016/j.jbiomech.2009.01.017. (PMID: 10.1016/j.jbiomech.2009.01.01719268291)
      Park WM, Kim K, Kim YH (2013) Effects of degenerated intervertebral discs on intersegmental rotations, intradiscal pressures, and facet joint forces of the whole lumbar spine. Comput Biol Med 43(9):1234–1240. https://doi.org/10.1016/j.compbiomed.2013.06.011. (PMID: 10.1016/j.compbiomed.2013.06.01123930818)
      Chen S-H, Zhong Z-C, Chen C-S, Chen W-J, Hung C (2009) Biomechanical comparison between lumbar disc arthroplasty and fusion. Med Eng Phys 31(2):244–253. https://doi.org/10.1016/j.medengphy.2008.07.007. (PMID: 10.1016/j.medengphy.2008.07.00718760654)
      Bruno AG, Bouxsein ML, Anderson DE (2015) Development and Validation of a Musculoskeletal Model of the Fully Articulated Thoracolumbar Spine and Rib Cage, (in eng). J Biomech Eng 137(8):081003. https://doi.org/10.1115/1.4030408. (PMID: 10.1115/1.403040825901907)
      Wang W, Wang D, De Groote F, Scheys L, Jonkers I (2020) Implementation of physiological functional spinal units in a rigid-body model of the thoracolumbar spine. J Biomech 98:109437. https://doi.org/10.1016/j.jbiomech.2019.109437. (PMID: 10.1016/j.jbiomech.2019.10943731679758)
      El Bojairami I, El-Monajjed K, Driscoll M (2020) Development and validation of a timely and representative finite element human spine model for biomechanical simulations. Sci Rep 10(1). https://doi.org/10.1038/s41598-020-77469-1.
      Imai K, Ohnishi I, Yamamoto S, Nakamura K (2008) In vivo assessment of lumbar vertebral strength in elderly women using computed tomography-based nonlinear finite element model. Spine 33(1):27–32. https://doi.org/10.1097/BRS.0b013e31815e3993. (PMID: 10.1097/BRS.0b013e31815e399318165745)
      Xu M, Yang J, Lieberman IH, Haddas R (2016) Lumbar spine finite element model for healthy subjects: development and validation, (in eng). Comput Methods Biomech Biomed Engin 20(1):1–15. https://doi.org/10.1080/10255842.2016.1193596. (PMID: 10.1080/10255842.2016.119359627315668)
      Mills MJ, Sarigul-Klijn N (2019) Validation of an In Vivo Medical Image-Based Young Human Lumbar Spine Finite Element Model. J Biomech Eng 141(3). https://doi.org/10.1115/1.4042183.
      Mitsuhashi N, Fujieda K, Tamura T, Kawamoto S, Takagi T, Okubo K (2009) BodyParts3D: 3D structure database for anatomical concepts," (in eng). Nucleic Acids Res 37(Database issue):D782–D785. https://doi.org/10.1093/nar/gkn613. (PMID: 10.1093/nar/gkn61318835852)
      El Bojairami I, Driscoll M (2021) Correlating skeletal muscle output force and intramuscular pressure via a 3-dimensional finite element muscle model. J Biomech Eng https://doi.org/10.1115/1.4052885.
      Gilsanz V, Boechat MI, Gilsanz R, Loro ML, Roe TF, Goodman WG (1994) Gender differences in vertebral sizes in adults: biomechanical implications, (in eng). Radiology 190(3):678–682. https://doi.org/10.1148/radiology.190.3.8115610. (PMID: 10.1148/radiology.190.3.81156108115610)
      Cooper RG, Holli S, Jayson MIV (1992) Gender variation of human spinal and paraspinal structures. Clin Biomech 7(2):120–124. https://doi.org/10.1016/0268-0033(92)90025-Y. (PMID: 10.1016/0268-0033(92)90025-Y)
      Onambélé GNL, Burgess K, Pearson SJ (2007) Gender-specific in vivo measurement of the structural and mechanical properties of the human patellar tendon. J Orthop Res 25(12):1635–1642. https://doi.org/10.1002/jor.20404. (PMID: 10.1002/jor.2040417568426)
      Ebbesen EN, Thomsen JS, Beck-Nielsen H, Nepper-Rasmussen HJ, Mosekilde L (1999) Age- and gender-related differences in vertebral bone mass, density, and strength. J Bone Min Res 14(8):1394–1403. https://doi.org/10.1359/jbmr.1999.14.8.1394. (PMID: 10.1359/jbmr.1999.14.8.1394)
      Stemper BD, Board D, Yoganandan N, Wolfla CE (2010) Biomechanical properties of human thoracic spine disc segments. J Craniovertebral Junction Spine 1(1):18–22. https://doi.org/10.4103/0974-8237.65477. (PMID: 10.4103/0974-8237.65477)
      Keaveny TM, Yeh OC (2002) Architecture and trabecular bone - toward an improved understanding of the biomechanical effects of age, sex and osteoporosis, (in eng). J Musculoskelet Neuronal Interact 2(3):205–208. (PMID: 15758434)
      Kurutz M (2010) Finite Element Modeling of the Human Lumbar Spine. Finite Element Analysis: Scyio 9:209–236.
      Reilly DT, Burstein AH (1975) The elastic and ultimate properties of compact bone tissue. J Biomech 8(6):393–405. https://doi.org/10.1016/0021-9290(75)90075-5. (PMID: 10.1016/0021-9290(75)90075-51206042)
      Ward SR et al (2009) Passive mechanical properties of the lumbar multifidus muscle support its role as a stabilizer, (in eng). J Biomech 42(10):1384–1389. https://doi.org/10.1016/j.jbiomech.2008.09.042. (PMID: 10.1016/j.jbiomech.2008.09.042194574912752430)
      Regev GJ et al (2011) Psoas muscle architectural design, in vivo sarcomere length range, and passive tensile properties support its role as a lumbar spine stabilizer. Spine 36(26):E1666. https://doi.org/10.1097/BRS.0b013e31821847b3. (PMID: 10.1097/BRS.0b013e31821847b321415810)
      El-Monajjed K, Driscoll M (2021) Investigation of reaction forces in the thoracolumbar fascia during different activities: A mechanistic numerical study. Life (Basel) 11(8):779. https://doi.org/10.3390/life11080779. (PMID: 10.3390/life1108077934440523)
      Yahia LH, Pigeon P, DesRosiers EA (1993) Viscoelastic properties of the human lumbodorsal fascia. J Biomed Eng 15(5):425–429. https://doi.org/10.1016/0141-5425(93)90081-9. (PMID: 10.1016/0141-5425(93)90081-98231161)
      Dvorák J, Panjabi MM, Chang DG, Theiler R, Grob D (1991) Functional radiographic diagnosis of the lumbar spine. Flexion-extension and lateral bending (in eng). Spine 16(5):562–571. https://doi.org/10.1097/00007632-199105000-00014. (PMID: 10.1097/00007632-199105000-0001420529998009657)
      Wong KW, Leong JC, Chan MK, Luk KD, Lu WW (2004) The flexion-extension profile of lumbar spine in 100 healthy volunteers. Spine (Phila Pa 1976) 29(15):1636–41. https://doi.org/10.1097/01.brs.0000132320.39297.6c. (PMID: 10.1097/01.brs.0000132320.39297.6c15284509)
      Dreischarf M et al (2014) Comparison of eight published static finite element models of the intact lumbar spine: Predictive power of models improves when combined together. J Biomech 47(8):1757–1766. https://doi.org/10.1016/j.jbiomech.2014.04.002. (PMID: 10.1016/j.jbiomech.2014.04.00224767702)
      Takahashi I, Kikuchi S, Sato K, Sato N (2006) Mechanical load of the lumbar spine during forward bending motion of the trunk-a biomechanical study, (in eng). Spine (Phila Pa 1976) 31(1):18–23. https://doi.org/10.1097/01.brs.0000192636.69129.fb. (PMID: 10.1097/01.brs.0000192636.69129.fb16395171)
      Brinckmann P, Grootenboer H (1991) Change of disc height, radial disc bulge, and intradiscal pressure from discectomy. An in vitro investigation on human lumbar discs, (in eng). Spine (Phila Pa 1976) 16(6):641–6. https://doi.org/10.1097/00007632-199106000-00008. (PMID: 10.1097/00007632-199106000-000081862403)
      Ayturk UM, Puttlitz CM (2011) Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine. Comput Methods Biomech Biomed Engin 14(8):695–705. https://doi.org/10.1080/10255842.2010.493517. (PMID: 10.1080/10255842.2010.49351721229413)
      Panjabi MM, Oxland TR, Yamamoto I, Crisco JJ (1994) Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves, (in eng). J Bone Joint Surg Am 76(3):413–424. https://doi.org/10.2106/00004623-199403000-00012. (PMID: 10.2106/00004623-199403000-000128126047)
      Sis HL et al (2016) Effect of follower load on motion and stiffness of the human thoracic spine with intact rib cage. J Biomech 49(14):3252–3259. https://doi.org/10.1016/j.jbiomech.2016.08.003. (PMID: 10.1016/j.jbiomech.2016.08.003275450815702885)
      Wilke H-J, Herkommer A, Werner K, Liebsch C (2020) In vitro Analysis of the Intradiscal Pressure of the Thoracic Spine. Front Bioeng Biotechnol 8:614. https://doi.org/10.3389/fbioe.2020.00614. (PMID: 10.3389/fbioe.2020.00614326266997311578)
      American Society of Mechanical Engineers (2018) ASME V&V40 Assessing the credibility of computational modeling through verification and validation : application to medical devices. American Society of Mechanical Engineers (in English), New York.
      Patwardhan AG, Havey RM, Meade KP, Lee B, Dunlap B (1999) A follower load increases the load-carrying capacity of the lumbar spine in compression, (in eng). Spine (Phila Pa 1976) 24(10):1003–9. https://doi.org/10.1097/00007632-199905150-00014. (PMID: 10.1097/00007632-199905150-0001410332793)
      Nachemson A (1966) The Load on Lumbar Disks in Different Positions of the Body. Clin Orthop Relat Res 45(1):107–122. https://doi.org/10.1097/00003086-196600450-00014. (PMID: 10.1097/00003086-196600450-000145937361)
      Borg-Stein J, Dugan SA (2007) Musculoskeletal disorders of pregnancy, delivery and postpartum. Phys Med Rehabil Clin N Am 18(3):459–476. https://doi.org/10.1016/j.pmr.2007.05.005. (PMID: 10.1016/j.pmr.2007.05.00517678762)
      Svensson HO, Andersson GB, Hagstad A, Jansson PO (1990) The relationship of low-back pain to pregnancy and gynecologic factors. Spine 15(5):371–375. https://doi.org/10.1097/00007632-199005000-00006. (PMID: 10.1097/00007632-199005000-000062141952)
      Wang S-M, Dezinno P, Maranets I, Berman MR, Caldwell-Andrews AA, Kain ZN (2004) Low back pain during pregnancy: prevalence, risk factors, and outcomes. Obstet Gynecol 104(1):65–70. https://doi.org/10.1097/01.AOG.0000129403.54061.0e. (PMID: 10.1097/01.AOG.0000129403.54061.0e15229002)
    • Contributed Indexing:
      Keywords: Biomechanics; Finite element analysis; Spine; Thoracolumbar
    • الموضوع:
      Date Created: 20231229 Date Completed: 20240320 Latest Revision: 20240320
    • الموضوع:
      20250114
    • الرقم المعرف:
      10.1007/s11517-023-03003-w
    • الرقم المعرف:
      38157201