Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Open-source flow setup for rapid and efficient [ 18 F]fluoride drying for automation of PET tracer syntheses.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Wiley Country of Publication: England NLM ID: 7610510 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1099-1344 (Electronic) Linking ISSN: 03624803 NLM ISO Abbreviation: J Labelled Comp Radiopharm Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London, New York, Wiley.
    • الموضوع:
    • نبذة مختصرة :
      One of the key strategies for radiochemical research facilities is the automation of synthesis processes. Unnecessary manual operations increase the radiation exposure of personnel, while simultaneously threatening the reliability of syntheses. We have previously reported an affordable open-source system comprising 3D-printed continuous flow reactors, a custom syringe pump, and a pressure regulator that can be used to perform radiofluorinations. In this paper, we address additional essential processes that are needed for radiotracer development and synthesis, with the aim of making laboratory work safer and research more efficient. We have designed and evaluated a fully automated system for rapidly and effectively processing and drying aqueous [ 18 F]fluoride that can be directly connected to the cyclotron. This process relies on triflyl fluoride gas generation and allows nucleophilic [ 18 F]fluoride to be prepared safely in a hotcell within 10 min and an activity recovery of 91.7 ± 1.6% (n = 5). Owing to the need for convenient radiofluorinated prosthetic ligands, we have adapted our continuous flow system to produce [ 18 F]fluoroethyl tosylate (FEOTs) and [ 18 F]fluoroethyl triflate (FEOTf), prosthetic groups that are widely used for late-stage fluoroethylation of PET tracers. The processes as well as the radiolabeling of different groups are compared and comprehensively discussed. Having a method providing [ 18 F]fluoroethyl tosylate (FEOTs) as well as [ 18 F]fluoroethyl triflate (FEOTf) quickly and highly efficiently is beneficial for radiochemical research.
      (© 2023 The Authors. Journal of Labelled Compounds and Radiopharmaceuticals published by John Wiley & Sons Ltd.)
    • References:
      Plutschack MB, Pieber B, Gilmore K, Seeberger PH. The Hitchhiker's guide to flow chemistry. Chem Rev. 2017;117(18):11796-11893. doi:10.1021/acs.chemrev.7b00183.
      Gutmann B, Kappe CO. Forbidden chemistries - paths to a sustainable future engaging continuous processing. J Flow Chem. 2017;7(3-4):65-71. doi:10.1556/1846.2017.00009.
      Hughes DL. Applications of flow chemistry in the pharmaceutical industry-highlights of the recent patent literature. Org Process Res Dev. 2020;24(10):1850-1860. doi:10.1021/acs.oprd.0c00156.
      Bogdan AR, Dombrowski AW. Emerging trends in flow chemistry and applications to the pharmaceutical industry. J Med Chem. 2019;62(14):6422-6468. doi:10.1021/acs.jmedchem.8b01760.
      Wegner J, Ceylan S, Kirschning A. Ten key issues in modern flow chemistry. Chem Commun. 2011;47(16):4583-4592. doi:10.1039/C0CC05060A.
      Zhang J, Wang K, Teixeira AR, Jensen KF, Luo G. Design and scaling up of microchemical systems: a review. Annu Rev Chem Biomol Eng. 2017;8(1):285-305. doi:10.1146/annurev-chembioeng-060816-101443.
      Berton M, de Souza JM, Abdiaj I, McQuade DT, Snead DR. Scaling continuous API synthesis from milligram to kilogram: extending the enabling benefits of micro to the plant. J Flow Chem. 2020;10(1):73-92. doi:10.1007/s41981-019-00060-x.
      Dong Z, Wen Z, Zhao F, Kuhn S, Noël T. Scale-up of micro- and milli-reactors: an overview of strategies, design principles and applications. Chem Eng Sci: X. 2021;10:100097. doi:10.1016/j.cesx.2021.100097.
      Unterweger MP, Fitzgerald R. Corrigendum to “update of NIST half-life results corrected for ionization chamber source-holder instability” [Appl. Radiat. Isot. 87 (2014) 92-94]. Appl Radiat Isot. 2020(159):108976. doi:10.1016/j.apradiso.2019.108976.
      Menzel F, Cotton J, Klein T, Maurer A, Ziegler T, Neumaier JM. FOMSy: 3D-printed flexible open-source microfluidic system and flow synthesis of PET-tracer. J Flow Chem. 2023;13(3):247-256. doi:10.1007/s41981-023-00267-z.
      Menzel F, Klein T, Ziegler T, Neumaier JM. 3D-printed PEEK reactors and development of a complete continuous flow system for chemical synthesis. React Chem Eng. 2020;5(7):1300-1310. doi:10.1039/D0RE00206B.
      Lee SJ, Morales-Colón MT, Brooks AF, et al. SNAr Radiofluorination with in situ generated [18F]Tetramethylammonium fluoride. J Org Chem. 2021;86(20):14121-14130. doi:10.1021/acs.joc.1c01491.
      Kniess T, Laube M, Steinbach J. “Hydrous 18F-fluoroethylation” - leaving off the azeotropic drying. Appl Radiat Isot. 2017;127:260-268. doi:10.1016/j.apradiso.2017.06.010.
      Gomzina NA, Zaitsev VV, Krasikova RN. Optimization of nucleophilic fluorination step in the synthesis of various compounds labelled with fluorine-18 for their use as pet radiotracers. J Label Compd Radiopharm. 2001;44(S1):S895-S897. doi:10.1002/jlcr.25804401314.
      Pees A, Sewing C, Vosjan MJWD, et al. Fast and reliable generation of [18F]triflyl fluoride, a gaseous [18F]fluoride source. Chem Commun. 2018;54(72):10179-10182. doi:10.1039/C8CC03206H.
      Zhou D, Katzenellenbogen JA. A simple method to generate [18F]triflyl fluoride for 18F radiosynthesis. Tetrahedron Lett. 2021;78:153273. doi:10.1016/j.tetlet.2021.153273.
      Dahl K, Garcia A, Stephenson NA, Vasdev N. “In-loop” 18F-fluorination: a proof-of-concept study. J Label Compd Radiopharm. 2019;62(7):292-297. doi:10.1002/jlcr.3751.
      Peters T, Vogg A, Oppel IM, Schmaljohann J. Simple and efficient synthesis of 2-[(18)F]fluoroethyl triflate for high yield (18)fluoroethylation. Appl Radiat Isot. 2014;94:141-146. doi:10.1016/j.apradiso.2014.07.016.
      van der Born D, Pees A, Poot AJ, Orru RVA, Windhorst AD, Vugts DJ. Fluorine-18 labelled building blocks for PET tracer synthesis. Chem Soc Rev. 2017;46(15):4709-4773. doi:10.1039/C6CS00492J.
      Kiesewetter DO, Carson RE, Jagoda EM, Herscovitch P, Eckelman WC. In vivo muscarinic binding of 3-(alkylthio)-3-thiadiazolyl tetrahydropyridines. Synapse. 1999;31(1):29-40. doi:10.1002/(SICI)1098-2396(199901)31:1<29::AID-SYN5>3.0.CO;2-9.
      Schieferstein H, Piel M, Beyerlein F, et al. Selective binding to monoamine oxidase a: in vitro and in vivo evaluation of 18F-labeled β-carboline derivatives. Bioorg Med Chem. 2015;23(3):612-623. doi:10.1016/j.bmc.2014.11.040.
      Trencsényi G, Kertész I, Krasznai ZT, et al. 2′[18F]-fluoroethylrhodamine B is a promising radiotracer to measure P-glycoprotein function. Eur J Pharm Sci. 2015;74:27-35. doi:10.1016/j.ejps.2015.03.026.
      Riss PJ, Hoehnemann S, Piel M, Roesch F. Two-step radiosynthesis of [18F]FE-β-CIT and [18F]PR04.MZ. J Label Compd Radiopharm. 2013;56(7):356-359. doi:10.1002/jlcr.3032.
      Pascali G, Nannavecchia G, Pitzianti S, Salvadori PA. Dose-on-demand of diverse 18F-fluorocholine derivatives through a two-step microfluidic approach. Nucl Med Biol. 2011;38(5):637-644. doi:10.1016/j.nucmedbio.2011.01.005.
      Kniess T, Laube M, Brust P, Steinbach J. 2-[18F]Fluoroethyl tosylate - a versatile tool for building 18F-based radiotracers for positron emission tomography. Med Chem Commun. 2015;6(10):1714-1754. doi:10.1039/C5MD00303B.
      Block D, Coenen HH, Stöcklin G. The N.C.A. Nucleophilic 18F-fluorination of 1,N-disubstituted alkanes as fluoroalkylation agents. J Label Compd Radiopharm. 1987;24:1029-1042. doi:10.1002/jlcr.2580240904.
      Beyerlein F, Piel M, Höhnemann S, Rösch F. Automated synthesis and purification of [18F]fluoro-[di-deutero]methyl tosylate. J Label Compd Radiopharm. 2013;56(7):360-363. doi:10.1002/jlcr.3043.
      Amor-Coarasa A, Kelly JM, Babich JW. 3D-printed automation for optimized PET radiochemistry. Sci Adv. 2019;5(9):eaax4762. doi:10.1126/sciadv.aax4762.
      Barnes C, Nair M, Aboagye EO, Archibald SJ, Allott L. A practical guide to automating fluorine-18 PET radiochemistry using commercially available cassette-based platforms. React Chem Eng. 2022;7(11):2265-2279. doi:10.1039/D2RE00219A.
      Li S, Schmitz A, Lee H, Mach RH. Automation of the Radiosynthesis of six different 18F-labeled radiotracers on the AllinOne. EJNMMI Radiopharm Chem. 2016;1(1):15. doi:10.1186/s41181-016-0018-0.
      Sonawane RB, Sonawane SR, Rasal NK, Jagtap SV. Room-temperature, base-mediated selective synthesis of 2-(Arylamino)ethanols and 2-Aryloxyethanols. SynOpen. 2019;03(04):124-137. doi:10.1055/s-0039-1690334.
      S. Lal G, P. Pez G, J. Pesaresi R, M. Prozonic F. Bis(2-methoxyethyl)aminosulfur trifluoride: a new broad-spectrum deoxofluorinating agent with enhanced thermal stability. Chem Commun. 1999;(2):215-216. doi:10.1039/A808517J.
      Dialer L, Petrovic D, Weigl U; Process for the production of cannabidiol and delta-9-tetrahydrocannabinol. international patent WO 2017/011210 A1. 19 January 2017.
      Playa H, Lewis TA, Ting A, et al. Dilazep analogues for the study of equilibrative nucleoside transporters 1 and 2 (ENT1 and ENT2). Bioorg Med Chem Lett. 2014;24(24):5801-5804. doi:10.1016/j.bmcl.2014.10.026.
      Yu Z, Cui M, Yan J, You Y. One-pot synthesis of hyperbranched poly (amido amine) clicked with a sugar shell via Michael addition polymerization and thiol click reaction. Sci China: Chem. 2010;53(8):1663-1668. doi:10.1007/s11426-010-4050-8.
      Schwäbisch D, Hein M, Miethchen R. Organofluorine compounds and fluorinating agents. J Fluorine Chem. 2004;125(1):119-124. doi:10.1016/j.jfluchem.2003.11.006.
      Kurteva VB, Shivachev BL, Nikolova RP. Spontaneous conversion of O-tosylates of 2-(piperazin-1-yl)ethanols into chlorides during classical tosylation procedure. R Soc Open Sci. 2019;6(2):181840. doi:10.1098/rsos.181840.
    • Grant Information:
      Karl und Anna Buck Stiftung
    • Contributed Indexing:
      Keywords: 3D printing; F-18; automation; flow chemistry; fluoroethyl triflate; radiochemistry; triflyl fluoride
    • الرقم المعرف:
      0 (fluoroethyl tosylate)
      Q80VPU408O (Fluorides)
      0 (Radiopharmaceuticals)
      0 (Fluorine Radioisotopes)
      0 (Benzenesulfonates)
    • الموضوع:
      Date Created: 20231228 Date Completed: 20240214 Latest Revision: 20240214
    • الموضوع:
      20250114
    • الرقم المعرف:
      10.1002/jlcr.4080
    • الرقم المعرف:
      38155110