References: Plutschack MB, Pieber B, Gilmore K, Seeberger PH. The Hitchhiker's guide to flow chemistry. Chem Rev. 2017;117(18):11796-11893. doi:10.1021/acs.chemrev.7b00183.
Gutmann B, Kappe CO. Forbidden chemistries - paths to a sustainable future engaging continuous processing. J Flow Chem. 2017;7(3-4):65-71. doi:10.1556/1846.2017.00009.
Hughes DL. Applications of flow chemistry in the pharmaceutical industry-highlights of the recent patent literature. Org Process Res Dev. 2020;24(10):1850-1860. doi:10.1021/acs.oprd.0c00156.
Bogdan AR, Dombrowski AW. Emerging trends in flow chemistry and applications to the pharmaceutical industry. J Med Chem. 2019;62(14):6422-6468. doi:10.1021/acs.jmedchem.8b01760.
Wegner J, Ceylan S, Kirschning A. Ten key issues in modern flow chemistry. Chem Commun. 2011;47(16):4583-4592. doi:10.1039/C0CC05060A.
Zhang J, Wang K, Teixeira AR, Jensen KF, Luo G. Design and scaling up of microchemical systems: a review. Annu Rev Chem Biomol Eng. 2017;8(1):285-305. doi:10.1146/annurev-chembioeng-060816-101443.
Berton M, de Souza JM, Abdiaj I, McQuade DT, Snead DR. Scaling continuous API synthesis from milligram to kilogram: extending the enabling benefits of micro to the plant. J Flow Chem. 2020;10(1):73-92. doi:10.1007/s41981-019-00060-x.
Dong Z, Wen Z, Zhao F, Kuhn S, Noël T. Scale-up of micro- and milli-reactors: an overview of strategies, design principles and applications. Chem Eng Sci: X. 2021;10:100097. doi:10.1016/j.cesx.2021.100097.
Unterweger MP, Fitzgerald R. Corrigendum to “update of NIST half-life results corrected for ionization chamber source-holder instability” [Appl. Radiat. Isot. 87 (2014) 92-94]. Appl Radiat Isot. 2020(159):108976. doi:10.1016/j.apradiso.2019.108976.
Menzel F, Cotton J, Klein T, Maurer A, Ziegler T, Neumaier JM. FOMSy: 3D-printed flexible open-source microfluidic system and flow synthesis of PET-tracer. J Flow Chem. 2023;13(3):247-256. doi:10.1007/s41981-023-00267-z.
Menzel F, Klein T, Ziegler T, Neumaier JM. 3D-printed PEEK reactors and development of a complete continuous flow system for chemical synthesis. React Chem Eng. 2020;5(7):1300-1310. doi:10.1039/D0RE00206B.
Lee SJ, Morales-Colón MT, Brooks AF, et al. SNAr Radiofluorination with in situ generated [18F]Tetramethylammonium fluoride. J Org Chem. 2021;86(20):14121-14130. doi:10.1021/acs.joc.1c01491.
Kniess T, Laube M, Steinbach J. “Hydrous 18F-fluoroethylation” - leaving off the azeotropic drying. Appl Radiat Isot. 2017;127:260-268. doi:10.1016/j.apradiso.2017.06.010.
Gomzina NA, Zaitsev VV, Krasikova RN. Optimization of nucleophilic fluorination step in the synthesis of various compounds labelled with fluorine-18 for their use as pet radiotracers. J Label Compd Radiopharm. 2001;44(S1):S895-S897. doi:10.1002/jlcr.25804401314.
Pees A, Sewing C, Vosjan MJWD, et al. Fast and reliable generation of [18F]triflyl fluoride, a gaseous [18F]fluoride source. Chem Commun. 2018;54(72):10179-10182. doi:10.1039/C8CC03206H.
Zhou D, Katzenellenbogen JA. A simple method to generate [18F]triflyl fluoride for 18F radiosynthesis. Tetrahedron Lett. 2021;78:153273. doi:10.1016/j.tetlet.2021.153273.
Dahl K, Garcia A, Stephenson NA, Vasdev N. “In-loop” 18F-fluorination: a proof-of-concept study. J Label Compd Radiopharm. 2019;62(7):292-297. doi:10.1002/jlcr.3751.
Peters T, Vogg A, Oppel IM, Schmaljohann J. Simple and efficient synthesis of 2-[(18)F]fluoroethyl triflate for high yield (18)fluoroethylation. Appl Radiat Isot. 2014;94:141-146. doi:10.1016/j.apradiso.2014.07.016.
van der Born D, Pees A, Poot AJ, Orru RVA, Windhorst AD, Vugts DJ. Fluorine-18 labelled building blocks for PET tracer synthesis. Chem Soc Rev. 2017;46(15):4709-4773. doi:10.1039/C6CS00492J.
Kiesewetter DO, Carson RE, Jagoda EM, Herscovitch P, Eckelman WC. In vivo muscarinic binding of 3-(alkylthio)-3-thiadiazolyl tetrahydropyridines. Synapse. 1999;31(1):29-40. doi:10.1002/(SICI)1098-2396(199901)31:1<29::AID-SYN5>3.0.CO;2-9.
Schieferstein H, Piel M, Beyerlein F, et al. Selective binding to monoamine oxidase a: in vitro and in vivo evaluation of 18F-labeled β-carboline derivatives. Bioorg Med Chem. 2015;23(3):612-623. doi:10.1016/j.bmc.2014.11.040.
Trencsényi G, Kertész I, Krasznai ZT, et al. 2′[18F]-fluoroethylrhodamine B is a promising radiotracer to measure P-glycoprotein function. Eur J Pharm Sci. 2015;74:27-35. doi:10.1016/j.ejps.2015.03.026.
Riss PJ, Hoehnemann S, Piel M, Roesch F. Two-step radiosynthesis of [18F]FE-β-CIT and [18F]PR04.MZ. J Label Compd Radiopharm. 2013;56(7):356-359. doi:10.1002/jlcr.3032.
Pascali G, Nannavecchia G, Pitzianti S, Salvadori PA. Dose-on-demand of diverse 18F-fluorocholine derivatives through a two-step microfluidic approach. Nucl Med Biol. 2011;38(5):637-644. doi:10.1016/j.nucmedbio.2011.01.005.
Kniess T, Laube M, Brust P, Steinbach J. 2-[18F]Fluoroethyl tosylate - a versatile tool for building 18F-based radiotracers for positron emission tomography. Med Chem Commun. 2015;6(10):1714-1754. doi:10.1039/C5MD00303B.
Block D, Coenen HH, Stöcklin G. The N.C.A. Nucleophilic 18F-fluorination of 1,N-disubstituted alkanes as fluoroalkylation agents. J Label Compd Radiopharm. 1987;24:1029-1042. doi:10.1002/jlcr.2580240904.
Beyerlein F, Piel M, Höhnemann S, Rösch F. Automated synthesis and purification of [18F]fluoro-[di-deutero]methyl tosylate. J Label Compd Radiopharm. 2013;56(7):360-363. doi:10.1002/jlcr.3043.
Amor-Coarasa A, Kelly JM, Babich JW. 3D-printed automation for optimized PET radiochemistry. Sci Adv. 2019;5(9):eaax4762. doi:10.1126/sciadv.aax4762.
Barnes C, Nair M, Aboagye EO, Archibald SJ, Allott L. A practical guide to automating fluorine-18 PET radiochemistry using commercially available cassette-based platforms. React Chem Eng. 2022;7(11):2265-2279. doi:10.1039/D2RE00219A.
Li S, Schmitz A, Lee H, Mach RH. Automation of the Radiosynthesis of six different 18F-labeled radiotracers on the AllinOne. EJNMMI Radiopharm Chem. 2016;1(1):15. doi:10.1186/s41181-016-0018-0.
Sonawane RB, Sonawane SR, Rasal NK, Jagtap SV. Room-temperature, base-mediated selective synthesis of 2-(Arylamino)ethanols and 2-Aryloxyethanols. SynOpen. 2019;03(04):124-137. doi:10.1055/s-0039-1690334.
S. Lal G, P. Pez G, J. Pesaresi R, M. Prozonic F. Bis(2-methoxyethyl)aminosulfur trifluoride: a new broad-spectrum deoxofluorinating agent with enhanced thermal stability. Chem Commun. 1999;(2):215-216. doi:10.1039/A808517J.
Dialer L, Petrovic D, Weigl U; Process for the production of cannabidiol and delta-9-tetrahydrocannabinol. international patent WO 2017/011210 A1. 19 January 2017.
Playa H, Lewis TA, Ting A, et al. Dilazep analogues for the study of equilibrative nucleoside transporters 1 and 2 (ENT1 and ENT2). Bioorg Med Chem Lett. 2014;24(24):5801-5804. doi:10.1016/j.bmcl.2014.10.026.
Yu Z, Cui M, Yan J, You Y. One-pot synthesis of hyperbranched poly (amido amine) clicked with a sugar shell via Michael addition polymerization and thiol click reaction. Sci China: Chem. 2010;53(8):1663-1668. doi:10.1007/s11426-010-4050-8.
Schwäbisch D, Hein M, Miethchen R. Organofluorine compounds and fluorinating agents. J Fluorine Chem. 2004;125(1):119-124. doi:10.1016/j.jfluchem.2003.11.006.
Kurteva VB, Shivachev BL, Nikolova RP. Spontaneous conversion of O-tosylates of 2-(piperazin-1-yl)ethanols into chlorides during classical tosylation procedure. R Soc Open Sci. 2019;6(2):181840. doi:10.1098/rsos.181840.
No Comments.