Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Immune skeletal dysplasia with neurodevelopmental abnormalities caused by a novel variant of EXTL3 gene in a Chinese family.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: John Wiley & Sons Country of Publication: United States NLM ID: 101603758 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2324-9269 (Electronic) Linking ISSN: 23249269 NLM ISO Abbreviation: Mol Genet Genomic Med Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: [Hoboken, NJ] : John Wiley & Sons, [2013]-
    • الموضوع:
    • نبذة مختصرة :
      Background: Immune skeletal dysplasia with neurodevelopmental abnormalities (ISDNA) is an extremely rare, autosomal recessive genetic disorder characterized by various skeletal abnormalities, neurodevelopmental deficits, and abnormal immune system function. ISDNA is caused by variation in the exostosin-like 3 (EXTL3) gene, located on chromosome 8p21.2, whose primary function is the biosynthesis of heparan sulfate (HS) skeleton structure. Only a few variations in the EXTL3 gene have been discovered so far. In these years of development, many pathogenic variants in genetic diseases with genetic and phenotypic heterogeneity have been investigated using whole-exome sequencing (WES) technology.
      Methods: In this research, a novel EXTL3 variant was first detected in a patient using WES, which was validated from Sanger sequencing in this family. Family history and clinical information were then collected through comprehensive medical examinations and genetic counseling. In silico prediction was then utilized to confirm the pathogenicity of the variant.
      Results: A novel homozygous variant, NM_001440: c.2015G>A (p.Arg672Gln) in the EXTL3 gene, was identified using WES, which has never been reported before. Sanger sequencing was performed to confirm that the variant segregated with the disease within the family.
      Conclusion: This research identified a novel pathogenic variant in the EXTL3 gene responsible for ISDNA in a Chinese family. It showed the potential diagnostic role of WES in ISDNA, expanded the EXTL3 gene variation spectrum, and demonstrated that the diagnosis of ISDNA using WES is feasible and effective. More comprehensive genetic counseling and precise prenatal diagnosis for the next pregnancy can also be provided to families with genetic disorders.
      (© 2023 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals LLC.)
    • References:
      Akalın, A., Taskiran, E. Z., Şimşek-Kiper, P., Utine, E., Alanay, Y., Özçelik, U., & Boduroğlu, K. (2021). Spondyloepimetaphyseal dysplasia EXTL3-deficient type: Long-term follow-up and review of the literature. American Journal of Medical Genetics Part A, 185(10), 3104-3110. https://doi.org/10.1002/ajmg.a.62378.
      Awad, W., Kjellström, S., Svensson Birkedal, G., Mani, K., & Logan, D. T. (2018). Structural and biophysical characterization of human EXTL3: Domain organization, glycosylation, and solution structure. Biochemistry, 57(7), 1166-1177. https://doi.org/10.1021/acs.biochem.7b00557.
      Bajaj, S., Satoskar, P., Nair, A., Sheth, F., Sheth, J., & Sheth, H. (2022). An ultra-rare case of immunoskeletal dysplasia with neurodevelopmental abnormalities in an Indian patient with homozygous c.953C>T variant in EXTL3 gene: A case report. BMC Pediatrics, 22(1), 78. https://doi.org/10.1186/s12887-022-03143-2.
      Chang, P., Chen, S., Chang, X., Zhu, J., Tang, Q., & Ma, L. (2022). EXTL3 could serve as a potential biomarker of prognosis and immunotherapy for prostate cancer and its potential mechanisms. European Journal of Medical Research, 27(1), 115. https://doi.org/10.1186/s40001-022-00740-w.
      Guo, L., Elcioglu, N. H., Mizumoto, S., Wang, Z., Noyan, B., Albayrak, H. M., Yamada, S., Matsumoto, N., Miyake, N., Nishimura, G., & Ikegawa, S. (2017). Identification of biallelic EXTL3 mutations in a novel type of spondylo-epi-metaphyseal dysplasia. Journal of Human Genetics, 62(8), 797-801. https://doi.org/10.1038/jhg.2017.38.
      Lai, Y., Li, D., Li, C., Muehleisen, B., Radek, K. A., Park, H. J., Jiang, Z., Li, Z., Lei, H., Quan, Y., Zhang, T., Wu, Y., Kotol, P., Morizane, S., Hata, T. R., Iwatsuki, K., Tang, C., & Gallo, R. L. (2012). The antimicrobial protein REG3A regulates keratinocyte proliferation and differentiation after skin injury. Immunity, 37(1), 74-84. https://doi.org/10.1016/j.immuni.2012.04.010.
      Lee, T. S., Allen, B. K., Giese, T. J., Guo, Z., Li, P., Lin, C., McGee, T. D., Jr., Pearlman, D. A., Radak, B. K., Tao, Y., Tsai, H. C., Xu, H., Sherman, W., & York, D. M. (2020). Alchemical binding free energy calculations in AMBER20: Advances and best practices for drug discovery. Journal of Chemical Information and Modeling, 60(11), 5595-5623. https://doi.org/10.1021/acs.jcim.0c00613.
      Liu, W., Xie, Y., Ma, J., Luo, X., Nie, P., Zuo, Z., Lahrmann, U., Zhao, Q., Zheng, Y., Zhao, Y., Xue, Y., & Ren, J. (2015). IBS: An illustrator for the presentation and visualization of biological sequences. Bioinformatics, 31(20), 3359-3361. https://doi.org/10.1093/bioinformatics/btv362.
      Mäkitie, O., Kaitila, I., & Savilahti, E. (2000). Deficiency of humoral immunity in cartilage-hair hypoplasia. The Journal of Pediatrics, 137(4), 487-492. https://doi.org/10.1067/mpd.2000.108102.
      Oud, M. M., Tuijnenburg, P., Hempel, M., van Vlies, N., Ren, Z., Ferdinandusse, S., Jansen, M. H., Santer, R., Johannsen, J., Bacchelli, C., Alders, M., Li, R., Davies, R., Dupuis, L., Cale, C. M., Wanders, R. J. A., Pals, S. T., Ocaka, L., James, C., … Kuijpers, T. W. (2017). Mutations in EXTL3 cause neuro-immuno-skeletal dysplasia syndrome. American Journal of Human Genetics, 100(2), 281-296. https://doi.org/10.1016/j.ajhg.2017.01.013.
      Pata, G., Nascimbeni, R., Di Lorenzo, D., Gervasi, M., Villanacci, V., & Salerni, B. (2009). Hereditary multiple exostoses and juvenile colon carcinoma: A case with a common genetic background? Journal of Surgical Oncology, 100(6), 520-522. https://doi.org/10.1002/jso.21365.
      Rigsby, R. E., & Parker, A. B. (2016). Using the PyMOL application to reinforce visual understanding of protein structure. Biochemistry and Molecular Biology Education, 44(5), 433-437. https://doi.org/10.1002/bmb.20966.
      Sousa da Silva, A. W., & Vranken, W. F. (2012). ACPYPE-Antechamber python parser interface. BMC Research Notes, 5, 367. https://doi.org/10.1186/1756-0500-5-367.
      Tian, X., Zhang, C., Zhou, B., Chen, X., Feng, X., Zheng, L., Wang, Y., Hao, S., & Hui, L. (2022). Case report: A novel GJB2 missense variant inherited from the low-level mosaic mother in a Chinese female with palmoplantar keratoderma with deafness. Frontiers in Genetics, 13, 938639. https://doi.org/10.3389/fgene.2022.938639.
      Volpi, S., Yamazaki, Y., Brauer, P. M., van Rooijen, E., Hayashida, A., Slavotinek, A., Sun Kuehn, H., Di Rocco, M., Rivolta, C., Bortolomai, I., Du, L., Felgentreff, K., Ott de Bruin, L., Hayashida, K., Freedman, G., Marcovecchio, G. E., Capuder, K., Rath, P., Luche, N., … Notarangelo, L. D. (2017). EXTL3 mutations cause skeletal dysplasia, immune deficiency, and developmental delay. The Journal of Experimental Medicine, 214(3), 623-637. https://doi.org/10.1084/jem.20161525.
      Yamada, S. (2020). Specific functions of exostosin-like 3 (EXTL3) gene products. Cellular & Molecular Biology Letters, 25, 39. https://doi.org/10.1186/s11658-020-00231-y.
    • Grant Information:
      2021-1-182 the Lanzhou Science and Technology Plan Project; 2022-5-81 the Lanzhou Science and Technology Plan Project; 2018-RC-95 the Lanzhou Talent Innovation and Entrepreneurship Project; 2016YFC1000307 the National Key Research and Development Program of China; 2005DKA32408 the National Population and Reproductive Health Science Data Center; 21JR7RA680 the Science and Technology Program of Gansu Province
    • Contributed Indexing:
      Keywords: EXTL3 gene; immune skeletal dysplasia with neurodevelopmental abnormalities; immune system function abnormalities; neurodevelopmental deficits; skeletal abnormalities
    • الرقم المعرف:
      0 (EXTL3 protein, human)
      9050-30-0 (Heparitin Sulfate)
      EC 2.4.1.- (N-Acetylglucosaminyltransferases)
    • الموضوع:
      Date Created: 20231127 Date Completed: 20240205 Latest Revision: 20240205
    • الموضوع:
      20250114
    • الرقم المعرف:
      PMC10767689
    • الرقم المعرف:
      10.1002/mgg3.2308
    • الرقم المعرف:
      38010033