Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Increased flow rate of hyperpolarized aqueous solution for dynamic nuclear polarization-enhanced magnetic resonance imaging achieved by an open Fabry-Pérot type microwave resonator.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- معلومة اضافية
- المصدر:
Publisher: Copernicus Publications Country of Publication: Germany NLM ID: 101775538 Publication Model: eCollection Cited Medium: Internet ISSN: 2699-0016 (Electronic) Linking ISSN: 26990016 NLM ISO Abbreviation: Magn Reson (Gott) Subsets: PubMed not MEDLINE
- بيانات النشر:
Original Publication: [Gottingen, Germany] : Copernicus Publications, [2020]-
- نبذة مختصرة :
A continuous flow dynamic nuclear polarization (DNP) employing the Overhauser effect at ambient temperatures can be used among other methods to increase sensitivity of magnetic resonance imaging (MRI). The hyperpolarized state of water protons can be achieved by flowing aqueous liquid through a microwave resonator placed directly in the bore of a 1.5 T MRI magnet. Here we describe a new open Fabry-Pérot resonator as DNP polarizer, which exhibits a larger microwave exposure volume for the flowing liquid in comparison with a cylindrical TE 013 microwave cavity. The Fabry-Pérot resonator geometry was designed using quasi-optical theory and simulated by CST software. Performance of the new polarizer was tested by MRI DNP experiments on a TEMPOL aqueous solution using a blood-vessel phantom. The Fabry-Pérot resonator revealed a 2-fold larger DNP enhancement with a 4-fold increased flow rate compared to the cylindrical microwave resonator. This increased yield of hyperpolarized liquid allows MRI applications on larger target objects.
Competing Interests: The authors declare that they have no conflict of interest.
(Copyright: © 2020 Alexey Fedotov et al.)
- References:
J Phys Chem Lett. 2017 Aug 3;8(15):3549-3555. (PMID: 28708395)
Angew Chem Int Ed Engl. 2010 Aug 16;49(35):6182-5. (PMID: 20665608)
J Magn Reson. 2012 Apr;217:1-5. (PMID: 22386647)
Radiology. 2012 Nov;265(2):418-25. (PMID: 22996746)
Sci Rep. 2018 May 30;8(1):8366. (PMID: 29849091)
Sci Rep. 2015 Aug 27;5:13535. (PMID: 26311410)
J Magn Reson. 2004 Jan;166(1):92-9. (PMID: 14675824)
Sci Rep. 2017 Mar 14;7:44010. (PMID: 28290535)
J Magn Reson. 1997 Jan;124(1):263-6. (PMID: 9424314)
J Magn Reson. 2008 Feb;190(2):307-15. (PMID: 18078772)
J Magn Reson Imaging. 2020 May;51(5):1471-1477. (PMID: 31665554)
Radiology. 2007 Mar;242(3):647-9. (PMID: 17213364)
J Magn Reson. 2006 Oct;182(2):353-7. (PMID: 16884939)
Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):2216-21. (PMID: 11854518)
J Magn Reson Imaging. 2008 Aug;28(2):284-6. (PMID: 18666152)
Magn Reson Med. 2006 Apr;55(4):731-7. (PMID: 16538605)
Nucl Instrum Methods Phys Res A. 1998;402:441-53. (PMID: 11543065)
J Magn Reson. 2019 Oct;307:106585. (PMID: 31499469)
Eur J Radiol. 2001 Oct;40(1):33-44. (PMID: 11673006)
Phys Med Biol. 1998 Jul;43(7):1893-7. (PMID: 9703052)
Magn Reson Med. 2001 Jul;46(1):1-5. (PMID: 11443703)
J Cereb Blood Flow Metab. 2012 Dec;32(12):2108-13. (PMID: 22990416)
AJR Am J Roentgenol. 2016 Aug;207(2):229-33. (PMID: 27224028)
J Magn Reson. 2012 Feb;215:94-9. (PMID: 22248644)
Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):14693-7. (PMID: 25267650)
J Magn Reson. 2018 Nov;296:152-164. (PMID: 30268940)
Acc Chem Res. 2012 Aug 21;45(8):1247-57. (PMID: 22452702)
Clin J Am Soc Nephrol. 2009 Feb;4(2):461-9. (PMID: 19201920)
J Magn Reson. 2019 Aug;305:41-50. (PMID: 31203098)
Magn Reson Med. 2014 Jan;71(1):50-6. (PMID: 24243653)
J Magn Reson. 2013 Apr;229:173-86. (PMID: 23290627)
J Magn Reson. 2016 Mar;264:13-21. (PMID: 26920826)
- الموضوع:
Date Created: 20231031 Latest Revision: 20231101
- الموضوع:
20240829
- الرقم المعرف:
PMC10500708
- الرقم المعرف:
10.5194/mr-1-275-2020
- الرقم المعرف:
37904825
No Comments.