Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Identification of Diagnostic Biomarkers for Compensatory Liver Cirrhosis Based on Gut Microbiota and Urine Metabolomics Analyses.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Springer Country of Publication: Switzerland NLM ID: 9423533 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-0305 (Electronic) Linking ISSN: 10736085 NLM ISO Abbreviation: Mol Biotechnol Subsets: MEDLINE
    • بيانات النشر:
      Publication: [Cham] : Springer
      Original Publication: Totowa, NJ : Humana Press, c1994-
    • الموضوع:
    • نبذة مختصرة :
      Liver cirrhosis is one of the most prevalent chronic liver disorders with high mortality. We aimed to explore changed gut microbiome and urine metabolome in compensatory liver cirrhosis (CLC) patients, thus providing novel diagnostic biomarkers for CLC. Forty fecal samples from healthy volunteers (control: 19) and CLC patients (patient: 21) were undertaken 16S rDNA sequencing. Chromatography-mass spectrometry was performed on 40 urine samples (20 controls and 20 patients). Microbiome and metabolome data were separately analyzed using corresponding bioinformatics approaches. The diagnostic model was constructed using the least absolute shrinkage and selection operator regression. The optimal diagnostic model was determined by five-fold cross-validation. Pearson correlation analysis was applied to clarify the relations among the diagnostic markers. 16S rDNA sequencing analyses showed changed overall alpha diversity and beta diversity in patient samples compared with those of controls. Similarly, we identified 841 changed metabolites. Pathway analysis revealed that the differential metabolites were mainly associated with pathways, such as tryptophan metabolism, purine metabolism, and steroid hormone biosynthesis. A 9-maker diagnostic model for CLC was determined, including 7 microorganisms and 2 metabolites. In this model, there were multiple correlations between microorganisms and metabolites. Subdoligranulum, Agathobacter, norank_f_Eubacterium_coprostanoligenes_group, Butyricicoccus, Lachnospiraceae_UCG_004, and L-2,3-Dihydrodipicolinate were elevated in CLC patients, whereas Blautia, Monoglobus, and 5-Acetamidovalerate were reduced. A novel diagnostic model for CLC was constructed and verified to be reliable, which provides new strategies for the diagnosis and treatment of CLC.
      (© 2023. The Author(s).)
    • References:
      Wilson, R., & Williams, D. M. (2022). Cirrhosis. Medical Clinics of North America, 106, 437–446. (PMID: 3549106410.1016/j.mcna.2021.12.001)
      Rashid, A., Gupta, A., Adiamah, A., West, J., Grainge, M., & Humes, D. J. (2022). Mortality following appendicectomy in patients with liver cirrhosis: A systematic review and meta-analysis. World Journal of Surgery, 46, 531–541. (PMID: 34988603873121510.1007/s00268-021-06373-0)
      Rojas-Acuña, D., Polo-Samillan, N., Vasquez-Chavesta, A. Z., Escalante-Arias, C., Rios-Perez, C. J., & Toro-Huamanchumo, C. J. (2022). Morbimortality associated with liver cirrhosis in Peru: an ecological analysis for the period of 2004–2016. International Journal of Environmental Research Public Health, 19, 9036. (PMID: 35897403933262810.3390/ijerph19159036)
      Lurje, I., Hammerich, L., & Tacke, F. (2020). Dendritic cell and T cell crosstalk in liver fibrogenesis and hepatocarcinogenesis: implications for prevention and therapy of liver cancer. International Journal of Molecular Sciences, 21, 7378. (PMID: 33036244758377410.3390/ijms21197378)
      Fan, Y., Li, Y., Chu, Y., Liu, J., Cui, L., & Zhang, D. (2021). Toll-like receptors recognize intestinal microbes in liver cirrhosis. Frontiers in Immunology, 12, 608498. (PMID: 33708204794036910.3389/fimmu.2021.608498)
      Ou, M., Guo, X., Li, Y., Zhang, H., Liu, T., Liu, Q., et al. (2022). Differences in anxiety among patients with liver cirrhosis with different compensation abilities. American Journal of Translational Research, 14, 5187–5194. (PMID: 359584439360890)
      Xie, Y., He, C., & Wang, W. (2022). A potential novel inflammation biomarker for predicting the prognosis of decompensated liver cirrhosis. Annals of Medicine, 54, 3201–3210. (PMID: 36369931966205610.1080/07853890.2022.2142277)
      Shao, L., Ling, Z., Chen, D., Liu, Y., Yang, F., & Li, L. (2018). Disorganized gut microbiome contributed to liver cirrhosis progression: A meta-omics-based study. Frontiers in Microbiology, 9, 3166. (PMID: 30631318631519910.3389/fmicb.2018.03166)
      Lee, N. Y., & Suk, K. T. (2020). The role of the gut microbiome in liver cirrhosis treatment. International Journal of Molecular Sciences, 22, 199. (PMID: 33379148779638110.3390/ijms22010199)
      Wang, R., Tang, R., Li, B., Ma, X., Schnabl, B., & Tilg, H. (2021). Gut microbiome, liver immunology, and liver diseases. Cellular and Molecular Immunology, 18, 4–17. (PMID: 3331862810.1038/s41423-020-00592-6)
      Xiong, Y., Wu, L., Shao, L., Wang, Y., Huang, Z., Huang, X., et al. (2021). Dynamic alterations of the gut microbial pyrimidine and purine metabolism in the development of liver cirrhosis. Frontiers in Molecular Biosciences, 8, 811399. (PMID: 3515556910.3389/fmolb.2021.811399)
      Li, J., Cao, Y., Lu, R., Li, H., Pang, Y., Fu, H., et al. (2020). Integrated fecal microbiome and serum metabolomics analysis reveals abnormal changes in rats with immunoglobulin a nephropathy and the intervention effect of Zhen Wu Tang. Frontiers in Pharmacology, 11, 606689. (PMID: 3358428310.3389/fphar.2020.606689)
      Philips, C. A., Augustine, P., Yerol, P. K., Ramesh, G. N., Ahamed, R., Rajesh, S., et al. (2020). Modulating the intestinal microbiota: therapeutic opportunities in liver disease. Journal of Clinical and Translational Hepatology, 8, 87–99. (PMID: 32274349)
      Liu, Y., Jin, Y., Li, J., Zhao, L., Li, Z., Xu, J., et al. (2018). Small bowel transit and altered gut microbiota in patients with liver cirrhosis. Frontiers in Physiology, 9, 470. (PMID: 29780327594601310.3389/fphys.2018.00470)
      Zhao, L., Wang, C., Peng, S., Zhu, X., Zhang, Z., Zhao, Y., et al. (2022). Pivotal interplays between fecal metabolome and gut microbiome reveal functional signatures in cerebral ischemic stroke. Journal of Translational Medicine, 20, 459. (PMID: 36209079954819510.1186/s12967-022-03669-0)
      Hu, Y., Chen, J., Xu, Y., Zhou, H., Huang, P., Ma, Y., et al. (2020). Alterations of gut microbiome and metabolite profiling in mice infected by Schistosoma japonicum. Frontiers in Immunology, 11, 569727. (PMID: 33162984758022110.3389/fimmu.2020.569727)
      Bauset, C., Gisbert-Ferrándiz, L., & Cosín-Roger, J. (2021). Metabolomics as a promising resource identifying potential biomarkers for inflammatory bowel disease. Journal of Clinical Medicine, 10, 622. (PMID: 33562024791525710.3390/jcm10040622)
      Xu, X. Y., Ding, H. G., Li, W. G., Xu, J. H., Han, Y., Jia, J. D., et al. (2020). Chinese guidelines on the management of liver cirrhosis (abbreviated version). World Journal of Gastroenterology, 26, 7088–7103. (PMID: 33362370772367110.3748/wjg.v26.i45.7088)
      Wang, Z., Cai, Z., Ferrari, M. W., Liu, Y., Li, C., Zhang, T., et al. (2021). The correlation between gut microbiota and serum metabolomic in elderly patients with chronic heart failure. Mediators of Inflammation, 2021, 5587428. (PMID: 34744513856606710.1155/2021/5587428)
      Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34, i884–i890. (PMID: 30423086612928110.1093/bioinformatics/bty560)
      Li, H., & Durbin, R. (2010). Fast and accurate long-read alignment with burrows-wheeler transform. Bioinformatics, 26, 589–595. (PMID: 20080505282810810.1093/bioinformatics/btp698)
      Magoč, T., & Salzberg, S. L. (2011). FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27, 2957–2963. (PMID: 21903629319857310.1093/bioinformatics/btr507)
      Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from illumina amplicon data. Nature Methods, 13, 581–583. (PMID: 27214047492737710.1038/nmeth.3869)
      Cole, J. R., Wang, Q., Fish, J. A., Chai, B., McGarrell, D. M., Sun, Y., et al. (2014). Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Research, 42, D633-642. (PMID: 2428836810.1093/nar/gkt1244)
      Edgar, R. C. (2013). UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10, 996–998. (PMID: 2395577210.1038/nmeth.2604)
      Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27, 2194–2200. (PMID: 21700674315004410.1093/bioinformatics/btr381)
      Lawley, B., & Tannock, G. W. (2017). Analysis of 16S rRNA gene amplicon sequences using the QIIME software package. Methods in Molecular Biology, 1537, 153–163. (PMID: 2792459310.1007/978-1-4939-6685-1_9)
      Wishart, D. S., Guo, A., Oler, E., Wang, F., Anjum, A., Peters, H., et al. (2022). HMDB 5.0: the human metabolome database for 2022. Nucleic Acids Research, 50, D622-d631. (PMID: 3498659710.1093/nar/gkab1062)
      Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., & Morishima, K. (2017). KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Research, 45, D353-d361. (PMID: 2789966210.1093/nar/gkw1092)
      Wang, X., & Zhi, Y. (2022). Altered urinary metabolomics in hereditary angioedema. Metabolites, 12, 1140. (PMID: 36422280969633210.3390/metabo12111140)
      Yang, B., Zhang, C., Cheng, S., Li, G., Griebel, J., & Neuhaus, J. (2021). Novel metabolic signatures of prostate cancer revealed by (1)H-NMR metabolomics of urine. Diagnostics (Basel), 11, 149. (PMID: 3349854210.3390/diagnostics11020149)
      Wang, R., Kang, H., Zhang, X., Nie, Q., Wang, H., Wang, C., et al. (2022). Urinary metabolomics for discovering metabolic biomarkers of bladder cancer by UPLC-MS. BMC Cancer, 22, 214. (PMID: 35220945888365210.1186/s12885-022-09318-5)
      Chong, J., Wishart, D. S., & Xia, J. (2019). Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Current Protocols in Bioinformatics, 68, e86. (PMID: 3175603610.1002/cpbi.86)
      Gao, J., Tarcea, V. G., Karnovsky, A., Mirel, B. R., Weymouth, T. E., Beecher, C. W., et al. (2010). Metscape: A cytoscape plug-in for visualizing and interpreting metabolomic data in the context of human metabolic networks. Bioinformatics, 26, 971–973. (PMID: 20139469284499010.1093/bioinformatics/btq048)
      López-Díaz, J. Ó. M., Méndez-González, J., López-Serrano, P. M., Sánchez-Pérez, F. J., Méndez-Encina, F. M., Mendieta-Oviedo, R., et al. (2022). Dummy regression to predict dry fiber in Agave lechuguilla Torr. in two large-scale bioclimatic regions in Mexico. PLoS ONE, 17, e0274641. (PMID: 36108072947732610.1371/journal.pone.0274641)
      Liu, W., Zhang, R., Shu, R., Yu, J., Li, H., Long, H., et al. (2020). Study of the relationship between microbiome and colorectal cancer susceptibility using 16SrRNA sequencing. BioMed Research International, 2020, 7828392. (PMID: 320831327011317)
      Li, P., Shuai, P., Shen, S., Zheng, H., Sun, P., Zhang, R., et al. (2023). Perturbations in gut microbiota composition in patients with polycystic ovary syndrome: A systematic review and meta-analysis. BMC Medicine, 21, 302. (PMID: 375591191041351710.1186/s12916-023-02975-8)
      Zhu, D., Ma, Y., Ding, S., Jiang, H., & Fang, J. (2018). Effects of melatonin on intestinal microbiota and oxidative stress in colitis mice. BioMed Research International, 2018, 2607679. (PMID: 29546052581889110.1155/2018/2607679)
      Lin, Y.-S., Lin, C.-Y., Hung, C.-L., Chung, Y.-C., & Lee, K.-Z. (2015). GPU-UPGMA: High-performance computing for UPGMA algorithm based on graphics processing units. Concurrency and Computation: Practice and Experience, 27, 3403–3414. (PMID: 10.1002/cpe.3355)
      Li, C., Zhou, K., Xiao, N., Peng, M., & Tan, Z. (2022). The effect of qiweibaizhu powder crude polysaccharide on antibiotic-associated diarrhea mice is associated with restoring intestinal mucosal bacteria. Frontiers in Nutrition, 9, 952647. (PMID: 35873450930530810.3389/fnut.2022.952647)
      Shi, Y., Zhang, L., Do, K. A., Peterson, C. B., & Jenq, R. R. (2020). aPCoA: Covariate adjusted principal coordinates analysis. Bioinformatics, 36, 4099–4101. (PMID: 32339223733256410.1093/bioinformatics/btaa276)
      Gong, W., Zhu, Y., Shi, X., Zhang, W., & Wen, P. (2021). Influence of tissue type on the bacterial diversity and community in pork bacon. Frontiers in Microbiology, 12, 799332. (PMID: 34925308867850310.3389/fmicb.2021.799332)
      Kwak, K. A., Cho, H. J., Yang, J. Y., & Park, Y. S. (2018). Current perspectives regarding stem cell-based therapy for liver cirrhosis. Canadian Journal of Gastroenterology and Hepatology, 2018, 4197857. (PMID: 29670867583315610.1155/2018/4197857)
      Agarwal, R., & Wisnu, W. (2022). The effect of statin therapy on mortality in adult patients with liver cirrhosis: An evidence-based case report. Acta Medica Indonesiana, 54, 491–499. (PMID: 36156474)
      Teunis, C., Nieuwdorp, M., & Hanssen, N. (2022). Interactions between tryptophan metabolism, the gut microbiome and the immune system as potential drivers of non-alcoholic fatty liver disease (NAFLD) and metabolic diseases. Metabolites, 12, 514. (PMID: 35736447922792910.3390/metabo12060514)
      Gradisteanu Pircalabioru, G., Liaw, J., Gundogdu, O., Corcionivoschi, N., Ilie, I., Oprea, L., et al. (2022). Effects of the lipid profile, type 2 diabetes and medication on the metabolic syndrome-associated gut microbiome. International Journal of Molecular Sciences, 23, 7509. (PMID: 35886861931887110.3390/ijms23147509)
      Iversen, K. N., Dicksved, J., Zoki, C., Fristedt, R., Pelve, E. A., Langton, M., et al. (2022). The effects of high fiber rye, compared to refined wheat, on gut microbiota composition, plasma short chain fatty acids, and implications for weight loss and metabolic risk factors (the RyeWeight Study). Nutrients, 14, 1669. (PMID: 35458231903287610.3390/nu14081669)
      Vallianou, N., Christodoulatos, G. S., Karampela, I., Tsilingiris, D., Magkos, F., Stratigou, T., et al. (2021). Understanding the role of the gut microbiome and microbial metabolites in non-alcoholic fatty liver disease: current evidence and perspectives. Biomolecules, 12, 1–56. (PMID: 10.3390/biom12010056)
      Pohl, K., Moodley, P., & Dhanda, A. (2022). The effect of increasing intestinal short-chain fatty acid concentration on gut permeability and liver injury in the context of liver disease: A systematic review. Journal of Gastroenterology and Hepatology, 37, 1498–1506. (PMID: 35612373954583910.1111/jgh.15899)
      Singh, V., Yeoh, B. S., Chassaing, B., Xiao, X., Saha, P., Aguilera Olvera, R., et al. (2018). Dysregulated microbial fermentation of soluble fiber induces cholestatic liver cancer. Cell, 175, 679-694.e622. (PMID: 30340040623285010.1016/j.cell.2018.09.004)
      Hussain, S. K., Dong, T. S., Agopian, V., Pisegna, J. R., Durazo, F. A., Enayati, P., et al. (2020). Dietary protein, fiber and coffee are associated with small intestine microbiome composition and diversity in patients with liver cirrhosis. Nutrients, 12, 1395. (PMID: 32414035728521610.3390/nu12051395)
      He, Y., Cheng, B., Guo, B. J., Huang, Z., Qin, J. H., Wang, Q. Y., et al. (2023). Metabonomics and 16S rRNA gene sequencing to study the therapeutic mechanism of Danggui Sini decoction on collagen-induced rheumatoid arthritis rats with Cold Bi syndrome. Journal of Pharmaceutical and Biomedical Analysis, 222, 115109. (PMID: 3627009710.1016/j.jpba.2022.115109)
      Nascimento, W. M., Machiavelli, A., Ferreira, L. G. E., Cruz Silveira, L., de Azevedo, S. S. D., Bello, G., et al. (2021). Gut microbiome profiles and associated metabolic pathways in HIV-infected treatment-naïve patients. Cells, 10, 385. (PMID: 33668457791772710.3390/cells10020385)
      Adekunle, R. O., DeSilva, K., & Cartwright, E. J. (2020). Hepatitis C care continuum in a human immunodeficiency virus (HIV) positive cohort: data from the HIV Atlanta Veterans Affairs Cohort Study. Open Forum Infectious Diseases, 7, ofaa085. (PMID: 32280724713601710.1093/ofid/ofaa085)
      Liu, X., Mao, B., Gu, J., Wu, J., Cui, S., Wang, G., et al. (2021). Blautia-a new functional genus with potential probiotic properties? Gut Microbes, 13, 1–21. (PMID: 3413216910.1080/19490976.2021.1875796)
      Ryvchin, R., Dubinsky, V., Rabinowitz, K., Wasserberg, N., Dotan, I., & Gophna, U. (2021). Alteration in urease-producing bacteria in the gut microbiomes of patients with inflammatory bowel diseases. Journal of Crohn’s and Colitis, 15, 2066–2077. (PMID: 3411124210.1093/ecco-jcc/jjab101)
      Rodriguez-Diaz, C., Taminiau, B., García-García, A., Cueto, A., Robles-Díaz, M., Ortega-Alonso, A., et al. (2022). Microbiota diversity in nonalcoholic fatty liver disease and in drug-induced liver injury. Pharmacological Research, 182, 106348. (PMID: 3581736010.1016/j.phrs.2022.106348)
      Liang, X. Q., Mai, P. Y., Qin, H., Li, S., Ou, W. J., Liang, J., et al. (2022). Integrated 16S rRNA sequencing and metabolomics analysis to investigate the antidepressant role of Yang-Xin-Jie-Yu decoction on microbe-gut-metabolite in chronic unpredictable mild stress-induced depression rat model. Frontiers in Pharmacology, 13, 972351. (PMID: 36249818956548510.3389/fphar.2022.972351)
      Li, R., Yi, X., Yang, J., Zhu, Z., Wang, Y., Liu, X., et al. (2022). Gut microbiome signatures in the progression of hepatitis B virus-induced liver disease. Frontiers in Microbiology, 13, 916061. (PMID: 35733959920801210.3389/fmicb.2022.916061)
      Dang, J. T., Mocanu, V., Park, H., Laffin, M., Hotte, N., Karmali, S., et al. (2022). Roux-en-Y gastric bypass and sleeve gastrectomy induce substantial and persistent changes in microbial communities and metabolic pathways. Gut Microbes, 14, 2050636. (PMID: 35316158894240710.1080/19490976.2022.2050636)
      Ganesan, R., Jeong, J. J., Kim, D. J., & Suk, K. T. (2022). Recent trends of microbiota-based microbial metabolites metabolism in liver disease. Frontiers in Medicine (Lausanne), 9, 841281. (PMID: 10.3389/fmed.2022.841281)
      Wei, X., Jiang, S., Zhao, X., Li, H., Lin, W., Li, B., et al. (2016). Community-metabolome correlations of gut microbiota from child-turcotte-pugh of A and B patients. Frontiers in Microbiology, 7, 1856. (PMID: 27899923511057110.3389/fmicb.2016.01856)
      Huang, Z., Xie, N., Illes, P., Di Virgilio, F., Ulrich, H., Semyanov, A., et al. (2021). From purines to purinergic signalling: Molecular functions and human diseases. Signal Transduction and Targeted Therapy, 6, 162. (PMID: 33907179807971610.1038/s41392-021-00553-z)
      Yin, H., Liu, N., & Chen, J. (2022). The role of the intestine in the development of hyperuricemia. Frontiers in Immunology, 13, 845684. (PMID: 35281005890752510.3389/fimmu.2022.845684)
      Charni-Natan, M., Aloni-Grinstein, R., Osher, E., & Rotter, V. (2019). Liver and steroid hormones-can a touch of p53 make a difference? Front Endocrinol (Lausanne), 10, 374. (PMID: 3124477910.3389/fendo.2019.00374)
      Robeva, R., Mladenović, D., Vesković, M., Hrnčić, D., Bjekić-Macut, J., Stanojlović, O., et al. (2021). The interplay between metabolic dysregulations and non-alcoholic fatty liver disease in women after menopause. Maturitas, 151, 22–30. (PMID: 3444627510.1016/j.maturitas.2021.06.012)
      Moctezuma-Velázquez, C., Low, G., Mourtzakis, M., Ma, M., Burak, K. W., Tandon, P., et al. (2018). Association between low testosterone levels and sarcopenia in cirrhosis: A cross-sectional study. Annals of Hepatology, 17, 615–623. (PMID: 2989370410.5604/01.3001.0012.0930)
      Chu, X., Jin, Q., Chen, H., Wood, G. C., Petrick, A., Strodel, W., et al. (2018). CCL20 is up-regulated in non-alcoholic fatty liver disease fibrosis and is produced by hepatic stellate cells in response to fatty acid loading. Journal of Translational Medicine, 16, 108. (PMID: 29690903593782010.1186/s12967-018-1490-y)
      Hliwa, A., Ramos-Molina, B., Laski, D., Mika, A., & Sledzinski, T. (2021). The role of fatty acids in non-alcoholic fatty liver disease progression: An update. International Journal of Molecular Sciences, 22, 6900. (PMID: 34199035826941510.3390/ijms22136900)
      Zhang, J., Chen, Z., Yu, H., Lu, Y., Yu, W., Miao, M., et al. (2021). Anti-aging effects of a functional food via the action of gut microbiota and metabolites in aging mice. Aging (Albany NY), 13, 17880–17900. (PMID: 3387873310.18632/aging.202873)
    • Grant Information:
      LGF19H030001 Zhejiang Province Public Welfare Technology Application Research Project; 2021ZH057 Medical Science and Technology Project of Zhejiang Province
    • Contributed Indexing:
      Keywords: Compensatory liver cirrhosis; Early diagnosis; Gut microbiota; Inflammation; Urine metabolomics
    • الرقم المعرف:
      0 (Biomarkers)
      0 (RNA, Ribosomal, 16S)
    • الموضوع:
      Date Created: 20231024 Date Completed: 20241108 Latest Revision: 20241216
    • الموضوع:
      20241216
    • الرقم المعرف:
      PMC11549169
    • الرقم المعرف:
      10.1007/s12033-023-00922-9
    • الرقم المعرف:
      37875653