Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Neurobehavioral effects of fungicides in zebrafish: a systematic review and meta-analysis.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- المؤلفون: Reis CG;Reis CG;Reis CG; Bastos LM; Bastos LM; Chitolina R; Chitolina R; Chitolina R; Gallas-Lopes M; Gallas-Lopes M; Gallas-Lopes M; Gallas-Lopes M; Zanona QK; Zanona QK; Zanona QK; Becker SZ; Becker SZ; Becker SZ; Herrmann AP; Herrmann AP; Herrmann AP; Herrmann AP; Piato A; Piato A; Piato A; Piato A
- المصدر:
Scientific reports [Sci Rep] 2023 Oct 24; Vol. 13 (1), pp. 18142. Date of Electronic Publication: 2023 Oct 24.- نوع النشر :
Meta-Analysis; Systematic Review; Journal Article; Research Support, Non-U.S. Gov't- اللغة:
English - المصدر:
- معلومة اضافية
- المصدر: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
- بيانات النشر: Original Publication: London : Nature Publishing Group, copyright 2011-
- الموضوع:
- نبذة مختصرة : Pesticides are widely used in global agriculture to achieve high productivity levels. Among them, fungicides are specifically designed to inhibit fungal growth in crops and seeds. However, their application often results in environmental contamination, as these chemicals can persistently be detected in surface waters. This poses a potential threat to non-target organisms, including humans, that inhabit the affected ecosystems. In toxicologic research, the zebrafish (Danio rerio) is the most commonly used fish species to assess the potential effects of fungicide exposure, and numerous and sometimes conflicting findings have been reported. To address this, we conducted a systematic review and meta-analysis focusing on the neurobehavioral effects of fungicides in zebrafish. Our search encompassed three databases (PubMed, Scopus, and Web of Science), and the screening process followed predefined inclusion/exclusion criteria. We extracted qualitative and quantitative data, as well as assessed reporting quality, from 60 included studies. Meta-analyses were performed for the outcomes of distance traveled in larvae and adults and spontaneous movements in embryos. The results revealed a significant overall effect of fungicide exposure on distance, with a lower distance traveled in the exposed versus control group. No significant effect was observed for spontaneous movements. The overall heterogeneity was high for distance and moderate for spontaneous movements. The poor reporting practices in the field hindered a critical evaluation of the studies. Nevertheless, a sensitivity analysis did not identify any studies skewing the meta-analyses. This review underscores the necessity for better-designed and reported experiments in this field.
(© 2023. Springer Nature Limited.) - References: FAO & WHO. Manual on the development and use of FAO and WHO specifications for chemical pesticides. (FAO, WHO, 2022). https://doi.org/10.4060/cb8401en .
Sharma, A. et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 1, 1446 (2019).
FAOSTAT. Statistics Division of the Food and Agriculture Organization of the United Nations. https://www.fao.org/faostat/en/#data/RP/visualize (2023).
Maggi, F., Tang, F. H. M., la Cecilia, D. & McBratney, A. PEST-CHEMGRIDS, global gridded maps of the top 20 crop-specific pesticide application rates from 2015 to 2025. Sci. Data 6, 170 (2019). (PMID: 315155086761121)
Pignati, W. A. et al. Spatial distribution of pesticide use in Brazil: A strategy for Health Surveillance. Cienc. Saude Coletiva 22, 3281–3293 (2017).
Tudi, M. et al. Agriculture development, pesticide application and its impact on the environment. Int. J. Environ. Res. Public. Health 18, 1112 (2021). (PMID: 335137967908628)
Pimentel, D. Amounts of pesticides reaching target pests: Environmental impacts and ethics. J. Agric. Environ. Ethics 8, 17–29 (1995).
Beketov, M. A., Kefford, B. J., Schäfer, R. B. & Liess, M. Pesticides reduce regional biodiversity of stream invertebrates. Proc. Natl. Acad. Sci. USA 110, 11039–11043 (2013). (PMID: 237762263704006)
Clasen, B. et al. Bioaccumulation and oxidative stress caused by pesticides in Cyprinus carpio reared in a rice-fish system. Sci. Total Environ. 626, 737–743 (2018). (PMID: 29358144)
McMahon, T. A. et al. Fungicide-induced declines of freshwater biodiversity modify ecosystem functions and services. Ecol. Lett. 15, 714–722 (2012). (PMID: 22587750)
Akoto, O., Azuure, A. A. & Adotey, K. D. Pesticide residues in water, sediment and fish from Tono Reservoir and their health risk implications. SpringerPlus 5, 1849 (2016). (PMID: 278188875075320)
Albuquerque, A. F. et al. Pesticides in Brazilian freshwaters: a critical review. Environ. Sci. Process. Impacts 18, 779–787 (2016). (PMID: 27367607)
de Araújo, E. P., Caldas, E. D. & Oliveira-Filho, E. C. Pesticides in surface freshwater: a critical review. Environ. Monit. Assess. 194, 452 (2022). (PMID: 35608712)
Xie, W., Zhao, J., Zhu, X., Chen, S. & Yang, X. Pyrethroid bioaccumulation in wild fish linked to geographic distribution and feeding habit. J. Hazard. Mater. 430, 128470 (2022). (PMID: 35180516)
Delgado-Blanca, I., Ruiz-Medina, A. & Ortega-Barrales, P. Novel sequential separation and determination of a quaternary mixture of fungicides by using an automatic fluorimetric optosensor. Food Addit. Contam. Part Chem. Anal. Control Expo. Risk Assess. 36, 278–288 (2019).
Zubrod, J. P. et al. Fungicides: An overlooked pesticide class?. Environ. Sci. Technol. 53, 3347–3365 (2019). (PMID: 308354486536136)
Beckerman, J., Palmer, C., Tedford, E. & Ypema, H. Fifty Years of Fungicide Development, Deployment, and Future Use. Phytopathology® 113, 694–706 (2023).
Richardson, J. R., Fitsanakis, V., Westerink, R. H. S. & Kanthasamy, A. G. Neurotoxicity of pesticides. Acta Neuropathol. (Berl.) 138, 343–362 (2019). (PMID: 31197504)
Bakkers, J. Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc. Res. 91, 279–288 (2011). (PMID: 216021743125074)
Dai, Y.-J. et al. Zebrafish as a model system to study toxicology. Environ. Toxicol. Chem. 33, 11–17 (2014). (PMID: 24307630)
Howe, K. et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498–503 (2013). (PMID: 235947433703927)
Fitzgerald, J. A., Könemann, S., Krümpelmann, L., Županič, A. & Vom Berg, C. Approaches to Test the Neurotoxicity of Environmental Contaminants in the Zebrafish Model: From Behavior to Molecular Mechanisms. Environ. Toxicol. Chem. 40, 989–1006 (2021). (PMID: 33270929)
Jia, M. et al. Developmental toxicity and neurotoxicity of penconazole enantiomers exposure on zebrafish (Danio rerio). Environ. Pollut. Barking Essex 1987 267, 115450 (2020).
Jiang, J. et al. Effects of difenoconazole on hepatotoxicity, lipid metabolism and gut microbiota in zebrafish (Danio rerio). Environ. Pollut. Barking Essex 1987 265, 114844 (2020).
Meng, Y. et al. Exposure to pyrimethanil induces developmental toxicity and cardiotoxicity in zebrafish. Chemosphere 255, 126889 (2020). (PMID: 32388256)
Shen, C., Zhou, Y., Tang, C., He, C. & Zuo, Z. Developmental exposure to mepanipyrim induces locomotor hyperactivity in zebrafish (Danio rerio) larvae. Chemosphere 256, 127106 (2020). (PMID: 32447115)
Teng, M. et al. Chronic exposure of zebrafish (Danio rerio) to flutolanil leads to endocrine disruption and reproductive disorders. Environ. Res. 184, 109310 (2020). (PMID: 32163770)
Wang, H. et al. Characterization of boscalid-induced oxidative stress and neurodevelopmental toxicity in zebrafish embryos. Chemosphere 238, 124753 (2020). (PMID: 31545217)
Gonçalves, Í. F. S. et al. Toxicity testing of pesticides in zebrafish—a systematic review on chemicals and associated toxicological endpoints. Environ. Sci. Pollut. Res. 27, 10185–10204 (2020).
Lushchak, V. I., Matviishyn, T. M., Husak, V. V., Storey, J. M. & Storey, K. B. Pesticide toxicity: a mechanistic approach. EXCLI J. 17, 1101–1136 (2018). (PMID: 305640866295629)
Hamm, J. T. et al. Characterizing sources of variability in zebrafish embryo screening protocols. ALTEX 36, 103–120 (2019). (PMID: 30415271)
Yanicostas, C. & Soussi-Yanicostas, N. SDHI fungicide toxicity and associated adverse outcome pathways: What can Zebrafish tell us?. Int. J. Mol. Sci. 22, 12362 (2021). (PMID: 348302528618699)
Frommlet, F. Improving reproducibility in animal research. Sci. Rep. 10, 19239 (2020). (PMID: 331591267648834)
Gerlai, R. Reproducibility and replicability in zebrafish behavioral neuroscience research. Pharmacol. Biochem. Behav. 178, 30–38 (2019). (PMID: 29481830)
Reis, C. G. et al. Neurobehavioral effects of fungicides in zebrafish: Protocol https://doi.org/10.17605/OSF.IO/F2D38 (2021).
Page, M. J. et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 372, n71 (2021). (PMID: 337820578005924)
Ouzzani, M., Hammady, H., Fedorowicz, Z. & Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 5, 210 (2016). (PMID: 279192755139140)
AERU. Pesticide Properties Database. Agriculture and Environment Research Unit (AERU) at the University of Hertfordshire. http://sitem.herts.ac.uk/aeru/ppdb/en/atoz_fung.htm (2022).
van Eck, N. J. & Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84, 523–538 (2010). (PMID: 20585380)
van Eck, N. J. & Waltman, L. VOS: A New Method for Visualizing Similarities Between Objects. in Advances in Data Analysis (eds. Decker, R. & Lenz, H.-J.) 299–306 (Springer, 2007). https://doi.org/10.1007/978-3-540-70981-7_34 .
Landis, S. C. et al. A call for transparent reporting to optimize the predictive value of preclinical research. Nature 490, 187–191 (2012). (PMID: 230601883511845)
McGuinness, L. A. & Higgins, J. P. T. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res. Synth. Methods 12, 55–61 (2021). (PMID: 32336025)
Vesterinen, H. M. et al. Meta-analysis of data from animal studies: A practical guide. J. Neurosci. Methods 221, 92–102 (2014). (PMID: 24099992)
Statistical Methods for Meta-Analysis. (Academic Press, 1985).
Higgins, J. P. T. et al. Cochrane handbook for systematic reviews of interventions. (John Wiley & Sons, 2019).
Bakbergenuly, I., Hoaglin, D. C. & Kulinskaya, E. Estimation in meta-analyses of mean difference and standardized mean difference. Stat. Med. 39, 171–191 (2020). (PMID: 31709582)
Balduzzi, S., Rücker, G. & Schwarzer, G. How to perform a meta-analysis with R: a practical tutorial. Evid. Based Ment. Health 22, 153–160 (2019). (PMID: 3156386510231495)
Wilkinson, L. ggplot2: Elegant graphics for data analysis by WICKHAM. H. Biometrics 67, 678–679 (2011).
Higgins, J. P. T. & Thompson, S. G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558 (2002). (PMID: 12111919)
Cochran, W. G. Some methods for strengthening the common χ 2 tests. Biometrics 10, 417–451 (1954).
Veroniki, A. A. et al. Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res. Synth. Methods 7, 55–79 (2016). (PMID: 26332144)
Viechtbauer, W. Bias and efficiency of meta-analytic variance estimators in the random-effects model. J. Educ. Behav. Stat. 30, 261–293 (2005).
Knapp, G. & Hartung, J. Improved tests for a random effects meta-regression with a single covariate. Stat. Med. 22, 2693–2710 (2003). (PMID: 12939780)
Richardson, M., Garner, P. & Donegan, S. Interpretation of subgroup analyses in systematic reviews: A tutorial. Clin. Epidemiol. Glob. Health 7, 192–198 (2019).
Viechtbauer, W., López-López, J. A., Sánchez-Meca, J. & Marín-Martínez, F. A comparison of procedures to test for moderators in mixed-effects meta-regression models. Psychol. Methods 20, 360–374 (2015). (PMID: 25110905)
Duval, S. & Tweedie, R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56, 455–463 (2000). (PMID: 10877304)
Egger, M., Davey Smith, G., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634 (1997). (PMID: 93105632127453)
Miller, R. G. The Jackknife—A review. Biometrika 61, 1–15 (1974).
Andrade, C. Mean Difference, Standardized Mean Difference (SMD), and Their Use in Meta-Analysis: As Simple as It Gets. J. Clin. Psychiatry 81, 20f13681 (2020).
Hill, B. N. et al. Inconsistencies in variable reporting and methods in larval zebrafish behavioral assays. Neurotoxicol. Teratol. 96, 107163 (2023). (PMID: 36758822)
OECD. Test No. 203: Fish, Acute Toxicity Test. (Organisation for Economic Co-operation and Development, 2019).
OECD. Test No. 236: Fish Embryo Acute Toxicity (FET) Test. (Organisation for Economic Co-operation and Development, 2013).
Paredes-Zúñiga, S., Trost, N., De la Paz, J. F., Alcayaga, J. & Allende, M. L. Behavioral effects of triadimefon in zebrafish are associated with alterations of the dopaminergic and serotonergic pathways. Prog. Neuropsychopharmacol. Biol. Psychiatry 92, 118–126 (2019). (PMID: 30593828)
Forner-Piquer, I. et al. Varying modalities of perinatal exposure to a pesticide cocktail elicit neurological adaptations in mice and zebrafish. Environ. Pollut. 278, 116755 (2021). (PMID: 33725534)
Cao, F. et al. Developmental toxicity of the triazole fungicide cyproconazole in embryo-larval stages of zebrafish (Danio rerio). Environ. Sci. Pollut. Res. 26, 4913–4923 (2019).
Tang, C. et al. Exposure to the AhR agonist cyprodinil impacts the cardiac development and function of zebrafish larvae. Ecotoxicol. Environ. Saf. 201, 110808 (2020). (PMID: 32516676)
Li, H. et al. Mitochondrial dysfunction-based cardiotoxicity and neurotoxicity induced by pyraclostrobin in zebrafish larvae. Environ. Pollut. 251, 203–211 (2019). (PMID: 31078959)
Yang, Y. et al. Toxic effects of thifluzamide on zebrafish (Danio rerio). J. Hazard. Mater. 307, 127–136 (2016). (PMID: 26780700)
Berg, E. M., Björnfors, E. R., Pallucchi, I., Picton, L. D. & El Manira, A. Principles governing locomotion in vertebrates: Lessons From Zebrafish. Front. Neural Circuits 12, 73 (2018). (PMID: 302713276146226)
Sterne, J. A. C. et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 343, d4002 (2011). (PMID: 21784880)
Samsa, G. & Samsa, L. A Guide to Reproducibility in Preclinical Research. Acad. Med. J. Assoc. Am. Med. Coll. 94, 47–52 (2019).
Sert, N. P. du et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLOS Biol. 18, e3000410 (2020).
Begley, C. G. & Ioannidis, J. P. A. Reproducibility in science: Improving the standard for basic and preclinical research. Circ. Res. 116, 116–126 (2015). (PMID: 25552691)
Shi, L. & Lin, L. The trim-and-fill method for publication bias: practical guidelines and recommendations based on a large database of meta-analyses. Medicine (Baltimore) 98, e15987 (2019).
van der Worp, H. B. et al. Can animal models of disease reliably inform human studies?. PLOS Med. 7, e1000245 (2010). (PMID: 203610202846855)
Ahmed, A. et al. The future of academic publishing. Nat. Hum. Behav. 7, 1021–1026 (2023). (PMID: 37443268)
Bernard, R. et al. fiddle: A tool to combat publication bias by getting research out of the file drawer and into the scientific community. Clin. Sci. 134, 2729–2739 (2020).
Laitin, D. D. et al. Reporting all results efficiently: A RARE proposal to open up the file drawer. Proc. Natl. Acad. Sci. 118, e2106178118 (2021). (PMID: 349339978719896)
Dirnagl, U. & Lauritzen, M. Fighting publication bias: Introducing the negative results section. J. Cereb. Blood Flow Metab. 30, 1263–1264 (2010). (PMID: 20596038)
Zwetsloot, P.-P. et al. Standardized mean differences cause funnel plot distortion in publication bias assessments. eLife 6, e24260 (2017).
Moermond, C. T. A., Kase, R., Korkaric, M. & Ågerstrand, M. CRED: Criteria for reporting and evaluating ecotoxicity data. Environ. Toxicol. Chem. 35, 1297–1309 (2016). (PMID: 26399705)
Domingues, I. et al. Prochloraz effects on biomarkers activity in zebrafish early life stages and adults. Environ. Toxicol. 28, 155–163 (2013). (PMID: 21656639)
Fitzmaurice, A. G. et al. Aldehyde dehydrogenase inhibition as a pathogenic mechanism in Parkinson disease. Proc. Natl. Acad. Sci. 110, 636–641 (2013). (PMID: 23267077)
Mu, X. et al. Evaluation of acute and developmental effects of difenoconazole via multiple stage zebrafish assays. Environ. Pollut. Barking Essex 1987(175), 147–157 (2013).
Andrade, T. S. et al. Carbendazim exposure induces developmental, biochemical and behavioural disturbance in zebrafish embryos. Aquat. Toxicol. Amst. Neth. 170, 390–399 (2016).
Jin, Y. et al. The fungicide imazalil induces developmental abnormalities and alters locomotor activity during early developmental stages in zebrafish. Chemosphere 153, 455–461 (2016). (PMID: 27035382)
Lulla, A. et al. Neurotoxicity of the Parkinson disease-associated pesticide ziram is synuclein-dependent in zebrafish embryos. Environ. Health Perspect. 124, 1766–1775 (2016). (PMID: 273017185089875)
Mu, X. et al. The developmental effect of difenoconazole on zebrafish embryos: A mechanism research. Environ. Pollut. Barking Essex 1987(212), 18–26 (2016).
Yang, Y. et al. Toxic effects of bromothalonil and flutolanil on multiple developmental stages in Zebrafish. Bull. Environ. Contam. Toxicol. 97, 91–97 (2016). (PMID: 27209543)
Altenhofen, S. et al. Tebuconazole alters morphological, behavioral and neurochemical parameters in larvae and adult zebrafish (Danio rerio). Chemosphere 180, 483–490 (2017). (PMID: 28431386)
De la Paz, J. F., Beiza, N., Paredes-Zúñiga, S., Hoare, M. S. & Allende, M. L. Triazole fungicides inhibit zebrafish hatching by blocking the secretory function of hatching gland cells. Int. J. Mol. Sci. 18, 710 (2017). (PMID: 283751635412296)
da Costa-Silva, D. G. et al. N-acetylcysteine inhibits Mancozeb-induced impairments to the normal development of zebrafish embryos. Neurotoxicol. Teratol. 68, 1–12 (2018). (PMID: 29665402)
Fan, Y. et al. Developmental toxicity and inhibition of the fungicide hymexazol to melanin biosynthesis in zebrafish embryos. Pestic. Biochem. Physiol. 147, 139–144 (2018). (PMID: 29933984)
Li, H. et al. Developmental toxicity and potential mechanisms of pyraoxystrobin to zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 151, 1–9 (2018). (PMID: 29304412)
Qian, L. et al. Mechanisms of developmental toxicity in zebrafish embryos (Danio rerio) induced by boscalid. Sci. Total Environ. 634, 478–487 (2018). (PMID: 29631138)
Teng, M. et al. Metabolomics and transcriptomics reveal the toxicity of difenoconazole to the early life stages of zebrafish (Danio rerio). Aquat. Toxicol. Amst. Neth. 194, 112–120 (2018).
Teng, M. et al. Effects of the bioconcentration and parental transfer of environmentally relevant concentrations of difenoconazole on endocrine disruption in zebrafish (Danio rerio). Environ. Pollut. 233, 208–217 (2018). (PMID: 29096293)
Wang, X. H. et al. Fluazinam impairs oxidative phosphorylation and induces hyper/hypo-activity in a dose specific manner in zebrafish larvae. Chemosphere 210, 633–644 (2018). (PMID: 30031347)
Cao, F. et al. Developmental toxicity of the fungicide ziram in zebrafish (Danio rerio). Chemosphere 214, 303–313 (2019). (PMID: 30265938)
Cao, F. et al. Developmental neurotoxicity of maneb: Notochord defects, mitochondrial dysfunction and hypoactivity in zebrafish (Danio rerio) embryos and larvae. Ecotoxicol. Environ. Saf. 170, 227–237 (2019). (PMID: 30529917)
Perez-Rodriguez, V., Souders, C. L., Tischuk, C. & Martyniuk, C. J. Tebuconazole reduces basal oxidative respiration and promotes anxiolytic responses and hypoactivity in early-staged zebrafish (Danio rerio). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 217, 87–97 (2019).
Qian, L. et al. Effects of penthiopyrad on the development and behaviour of zebrafish in early-life stages. Chemosphere 214, 184–194 (2019). (PMID: 30265925)
Souders, C. L. et al. Sub-lethal effects of the triazole fungicide propiconazole on zebrafish (Danio rerio) development, oxidative respiration, and larval locomotor activity. Neurotoxicol. Teratol. 74, 106809 (2019). (PMID: 31129159)
Teng, M. et al. Effect of Propiconazole on the Lipid Metabolism of Zebrafish Embryos (Danio rerio). J. Agric. Food Chem. 67, 4623–4631 (2019). (PMID: 30950260)
Tian, S. et al. Toxicity effects in zebrafish embryos (Danio rerio) induced by prothioconazole. Environ. Pollut. 255, 113269 (2019). (PMID: 31574395)
Valadas, J. et al. Propiconazole induces abnormal behavior and oxidative stress in zebrafish. Environ. Sci. Pollut. Res. 26, 27808–27815 (2019).
Wang, H. et al. Toxic effects of oxine-copper on development and behavior in the embryo-larval stages of zebrafish. Aquat. Toxicol. Amst. Neth. 210, 242–250 (2019).
Yang, Y. et al. Dysregulation of circadian rhythm in zebrafish (Danio rerio) by thifluzamide: Involvement of positive and negative regulators. Chemosphere 235, 280–287 (2019). (PMID: 31260868)
Yang, Y. et al. Flutolanil affects circadian rhythm in zebrafish (Danio rerio) by disrupting the positive regulators. Chemosphere 228, 649–655 (2019). (PMID: 31063912)
Zhou, Y., Chen, X., Teng, M., Zhang, J. & Wang, C. Toxicity effects of captan on different life stages of zebrafish (Danio rerio). Environ. Toxicol. Pharmacol. 69, 80–85 (2019). (PMID: 30965279)
Hussain, A. et al. Multiple screening of pesticides toxicity in zebrafish and daphnia based on locomotor activity alterations. Biomolecules 10, 1224 (2020). (PMID: 328424817564125)
Kumar, N. et al. Developmental toxicity in embryo-larval zebrafish (Danio rerio) exposed to strobilurin fungicides (azoxystrobin and pyraclostrobin). Chemosphere 241, 124980 (2020). (PMID: 31600620)
Liu, X., Zhang, R. & Jin, Y. Differential responses of larval zebrafish to the fungicide propamocarb: Endpoints at development, locomotor behavior and oxidative stress. Sci. Total Environ. 731, 139136 (2020). (PMID: 32438087)
Pang, S. et al. Myclobutanil developmental toxicity, bioconcentration and sex specific response in cholesterol in zebrafish (Denio rerio). Chemosphere 242, 125209 (2020). (PMID: 31677519)
Souders, C. L. et al. Investigation into the sub-lethal effects of the triazole fungicide triticonazole in zebrafish (Danio rerio) embryos/larvae. Environ. Toxicol. 35, 254–267 (2020). (PMID: 31670470)
Vasamsetti, B. M. K., Kim, N.-S., Chon, K. & Park, H.-H. Teratogenic and developmental toxic effects of etridiazole on zebrafish (Danio rerio) embryos. Appl. Biol. Chem. 63, 80 (2020).
Zhang, X., Zhang, P., Perez-Rodriguez, V., Souders, C. L. & Martyniuk, C. J. Assessing the toxicity of the benzamide fungicide zoxamide in zebrafish (Danio rerio): Towards an adverse outcome pathway for beta-tubulin inhibitors. Environ. Toxicol. Pharmacol. 78, 103405 (2020). (PMID: 32446185)
Barreto, A., Santos, J., Amorim, M. J. B. & Maria, V. L. Is the Synthetic Fungicide Fosetyl-Al Safe for the Ecotoxicological Models Danio rerio and Enchytraeus crypticus?. Appl. Sci. 11, 7209 (2021).
Brenet, A., Hassan-Abdi, R. & Soussi-Yanicostas, N. Bixafen, a succinate dehydrogenase inhibitor fungicide, causes microcephaly and motor neuron axon defects during development. Chemosphere 265, 128781 (2021). (PMID: 33153847)
Fan, R. et al. Individual and synergistic toxic effects of carbendazim and chlorpyrifos on zebrafish embryonic development. Chemosphere 280, 130769 (2021). (PMID: 34162088)
Huang, T. et al. Behavioral and developmental toxicity assessment of the strobilurin fungicide fenamidone in zebrafish embryos/larvae (Danio rerio). Ecotoxicol. Environ. Saf. 228, 112966 (2021). (PMID: 34794025)
Leandro, L. P. et al. Behavioral changes occur earlier than redox alterations in developing zebrafish exposed to Mancozeb. Environ. Pollut. 268, 115783 (2021).
Li, X. Y. et al. Relative comparison of strobilurin fungicides at environmental levels: Focus on mitochondrial function and larval activity in early staged zebrafish (Danio rerio). Toxicology 452, 152706 (2021). (PMID: 33548355)
Lin, H., Lin, F., Yuan, J., Cui, F. & Chen, J. Toxic effects and potential mechanisms of Fluxapyroxad to zebrafish (Danio rerio) embryos. Sci. Total Environ. 769, 144519 (2021). (PMID: 33482547)
Paredes-Zúñiga, S., Ormeño, F. & Allende, M. L. Triadimefon triggers circling behavior and conditioned place preference/aversion in zebrafish in a dose dependent manner. Neurotoxicol. Teratol. 86, 106979 (2021). (PMID: 33839247)
Pompermaier, A. et al. Water and suspended sediment runoff from vineyard watersheds affecting the behavior and physiology of zebrafish. Sci. Total Environ. 757, 143794 (2021). (PMID: 33272603)
Qian, L. et al. Environmentally relevant concentrations of boscalid exposure affects the neurobehavioral response of zebrafish by disrupting visual and nervous systems. J. Hazard. Mater. 404, 124083 (2021). (PMID: 33011634)
Tang, C. et al. Long-term exposure to cyprodinil causes abnormal zebrafish aggressive and antipredator behavior through the hypothalamic–pituitary–interrenal axis. Aquat. Toxicol. 241, 106002 (2021). (PMID: 34717145)
Wu, A. et al. Developmental toxicity of procymidone to larval zebrafish based on physiological and transcriptomic analysis. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 248, 109081 (2021).
Yang, Y. et al. Thifluzamide exposure induced neuro-endocrine disrupting effects in zebrafish (Danio rerio). Arch. Toxicol. 95, 3777–3786 (2021). (PMID: 34635929)
Yang, L. et al. Evaluation and comparison of the mitochondrial and developmental toxicity of three strobilurins in zebrafish embryo/larvae. Environ. Pollut. Barking Essex 1987 270, 116277 (2021). - الرقم المعرف: 0 (Fungicides, Industrial)
0 (Pesticides) - الموضوع: Date Created: 20231024 Date Completed: 20231027 Latest Revision: 20231118
- الموضوع: 20231118
- الرقم المعرف: PMC10598008
- الرقم المعرف: 10.1038/s41598-023-45350-6
- الرقم المعرف: 37875532
- المصدر:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login
حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.