Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Extracellular vesicles from retinal pigment epithelial cells expressing R345W-Fibulin-3 induce epithelial-mesenchymal transition in recipient cells.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- المؤلفون: Zhou M;Zhou M; Zhao Y; Zhao Y; Weber SR; Weber SR; Gates C; Gates C; Carruthers NJ; Carruthers NJ; Chen H; Chen H; Liu X; Liu X; Wang HG; Wang HG; Ford M; Ford M; Swulius MT; Swulius MT; Barber AJ; Barber AJ; Grillo SL; Grillo SL; Sundstrom JM; Sundstrom JM
- المصدر:
Journal of extracellular vesicles [J Extracell Vesicles] 2023 Oct; Vol. 12 (10), pp. e12373.- نوع النشر :
Journal Article; Research Support, Non-U.S. Gov't- اللغة:
English - المصدر:
- معلومة اضافية
- المصدر: Publisher: Wiley Country of Publication: United States NLM ID: 101610479 Publication Model: Print Cited Medium: Internet ISSN: 2001-3078 (Electronic) Linking ISSN: 20013078 NLM ISO Abbreviation: J Extracell Vesicles Subsets: MEDLINE
- بيانات النشر: Publication: 2020- : [Hoboken, NJ] : Wiley
Original Publication: Järfälla : Co-Action Pub. - الموضوع:
- نبذة مختصرة : We have shown previously that expression of R345W-Fibulin-3 induces epithelial-mesenchymal transition (EMT) in retinal pigment epithelial (RPE) cells. The purpose of the current study was to determine if extracellular vesicles (EVs) derived from RPE cells expressing R345W-Fibulin-3 mutation are sufficient to induce EMT in recipient cells. ARPE-19 cells were infected with luciferase-tagged wild-type (WT)- Fibulin-3 or luciferase-tagged R345W-Fibulin-3 (R345W) using lentiviruses. EVs were isolated from the media by ultracentrifugation or density gradient ultracentrifugation. Transmission electron microscopy and cryogenic electron microscopy were performed to study the morphology of the EVs. The size distribution of EVs were determined by nanoparticle tracking analysis (NTA). EV cargo was analysed using LC-MS/MS based proteomics. EV-associated transforming growth factor beta 1 (TGFβ1) protein was measured by enzyme-linked immunosorbent assay. The capacity of EVs to stimulate RPE migration was evaluated by treating recipient cells with WT- or R345W-EVs. The role of EV-bound TGFβ was determined by pre-incubation of EVs with a pan-TGFβ blocking antibody or IgG control. EM imaging revealed spherical vesicles with two subpopulations of EVs: a group with diameters around 30 nm and a group with diameters over 100 nm, confirmed by NTA analysis. Pathway analysis revealed that members of the sonic hedgehog pathway were less abundant in R345W- EVs, while EMT drivers were enriched. Additionally, R345W-EVs had higher concentrations of TGFβ1 compared to control. Critically, treatment with R345W-EVs was sufficient to increase EMT marker expression, as well as cell migration in recipient cells. This EV-increased cell migration was significantly inhibited by pre-incubation of EVs with pan-TGFβ-neutralising antibody. In conclusion, the expression of R345W-Fibulin-3 alters the size and cargo of EVs, which are sufficient to enhance the rate of cell migration in a TGFβ dependent manner. These results suggest that EV-bound TGFβ plays a critical role in the induction of EMT in RPE cells.
(© 2023 The Authors. Journal of Extracellular Vesicles published by Wiley Periodicals LLC on behalf of International Society for Extracellular Vesicles.) - References: Alvarez-Erviti, L., Seow, Y., Schapira, A. H., Gardiner, C., Sargent, I. L., Wood, M. J., & Cooper, J. M. (2011). Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiology of Disease, 42(3), 360-367.
Askeland, A., Borup, A., Østergaard, O., Olsen, J. V., Lund, S. M., Christiansen, G., Kristensen, S. R., Heegaard, N. H. H., & Pedersen, S. (2020). Mass-spectrometry based proteome comparison of extracellular vesicle isolation methods: Comparison of ME-kit, size-exclusion chromatography, and high-speed centrifugation. Biomedicines, 8(8), 246.
Atienzar-Aroca, S., Serrano-Heras, G., Freire Valls, A., Ruiz de Almodovar, C., Muriach, M., Barcia, J. M., Garcia-Verdugo, J. M., Romero, F. J., & Sancho-Pelluz, J. (2018). Role of retinal pigment epithelium-derived exosomes and autophagy in new blood vessel formation. Journal of Cellular and Molecular Medicine, 22(11), 5244-5256.
Biasutto, L., Chiechi, A., Couch, R., Liotta, L. A., & Espina, V. (2013). Retinal pigment epithelium (RPE) exosomes contain signaling phosphoproteins affected by oxidative stress. Experimental Cell Research, 319(13), 2113-2123.
Burton, J. B., Carruthers, N. J., Hou, Z., Matherly, L. H., & Stemmer, P. M. (2022). Pattern analysis of organellar maps for interpretation of proteomic data. Proteomes, 10(2), 18.
Burton, J. B., Carruthers, N. J., & Stemmer, P. M. (2023). Enriching extracellular vesicles for mass spectrometry. Mass Spectrometry Reviews, 42(2), 779-795.
Buzas, E. I. (2023). The roles of extracellular vesicles in the immune system. Nature Reviews. Immunology, 23(4), 236-250.
Cao, D., Leong, B., Messinger, J. D., Kar, D., Ach, T., Yannuzzi, L. A., Freund, K. B., & Curcio, C. A. (2021). Hyperreflective foci, optical coherence tomography progression indicators in age-related macular degeneration, include transdifferentiated retinal pigment epithelium. Investigative Ophthalmology & Visual Science, 62(10), 34.
Chen, Y., Zeng, C., Zhan, Y., Wang, H., Jiang, X., & Li, W. (2017). Aberrant low expression of p85α in stromal fibroblasts promotes breast cancer cell metastasis through exosome-mediated paracrine Wnt10b. Oncogene, 36(33), 4692-4705.
Choi, D., & Gho, Y. S. (2015). Isolation of extracellular vesicles for proteomic profiling. Methods in Molecular Biology (Clifton, N.J.), 1295, 167-177.
Choi, D., & Gho, Y. S. (2016). Isolation of extracellular vesicles for proteomic profiling. Methods in Molecular Biology (Clifton, N.J.), 2261, 193-206.
Colombo, M., Moita, C., van Niel, G., Kowal, J., Vigneron, J., Benaroch, P., Manel, N., Moita, L. F., Théry, C., & Raposo, G. (2013). Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. Journal of Cell Science, 126(Pt 24), 5553-5565.
Crabb, J. W. (2014). The proteomics of drusen. Cold Spring Harbor Perspectives in Medicine, 4(7), a017194.
Garland, D. L., Fernandez-Godino, R., Kaur, I., Speicher, K. D., Harnly, J. M., Lambris, J. D., Speicher, D. W., & Pierce, E. A. (2014). Mouse genetics and proteomic analyses demonstrate a critical role for complement in a model of DHRD/ML, an inherited macular degeneration. Human Molecular Genetics, 23(1), 52-68.
Ghosh, S., Shang, P., Terasaki, H., Stepicheva, N., Hose, S., Yazdankhah, M., Weiss, J., Sakamoto, T., Bhutto, I. A., Xia, S., Zigler, J. S., Jr, Kannan, R., Qian, J., Handa, J. T., & Sinha, D. (2018). A role for βA3/A1-crystallin in type 2 EMT of RPE cells occurring in dry age-related macular degeneration. Investigative Ophthalmology & Visual Science, 59(4), AMD104-AMD113.
Goldberg, M. F., McLeod, S., Tso, M., Packo, K., Edwards, M., Bhutto, I. A., Baldeosingh, R., Eberhart, C., Weber, B. H. F., & Lutty, G. A. (2018). Ocular histopathology and immunohistochemical analysis in the oldest known individual with autosomal dominant vitreoretinochoroidopathy. Ophthalmology. Retina, 2(4), 360-378.
Gotzmann, J., Fischer, A. N., Zojer, M., Mikula, M., Proell, V., Huber, H., Jechlinger, M., Waerner, T., Weith, A., Beug, H., & Mikulits, W. (2006). A crucial function of PDGF in TGF-beta-mediated cancer progression of hepatocytes. Oncogene, 25(22), 3170-3185.
Grillo, S. L., Etzel, J. D., Weber, S. R., Ondeck, C., Wang, W., Zhao, Y., Barber, A. J., & Sundstrom, J. M. (2021). Descriptive analysis of Fibulin-3 and the extracellular vesicle marker, Alix, in drusen from a small cohort of postmortem human eyes. Experimental Eye Research, 203, 108422.
Guidry, C., Medeiros, N. E., & Curcio, C. A. (2002). Phenotypic variation of retinal pigment epithelium in age-related macular degeneration. Investigative Ophthalmology & Visual Science, 43(1), 267-273.
Hazim, R. A., Volland, S., Yen, A., Burgess, B. L., & Williams, D. S. (2019). Rapid differentiation of the human RPE cell line, ARPE-19, induced by nicotinamide. Experimental Eye Research, 179, 18-24.
Hirasawa, M., Noda, K., Noda, S., Suzuki, M., Ozawa, Y., Shinoda, K., Inoue, M., Ogawa, Y., Tsubota, K., & Ishida, S. (2011). Transcriptional factors associated with epithelial-mesenchymal transition in choroidal neovascularization. Molecular Vision, 17, 1222-1230.
Hulleman, J. D., Brown, S. J., Rosen, H., & Kelly, J. W. (2013). A high-throughput cell-based Gaussia luciferase reporter assay for identifying modulators of fibulin-3 secretion. Journal of Biomolecular Screening, 18(6), 647-658.
Hulleman, J. D., & Kelly, J. W. (2015). Genetic ablation of N-linked glycosylation reveals two key folding pathways for R345W fibulin-3, a secreted protein associated with retinal degeneration. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 29(2), 565-575.
Ishikawa, K., Kannan, R., & Hinton, D. R. (2016). Molecular mechanisms of subretinal fibrosis in age-related macular degeneration. Experimental Eye Research, 142, 19-25.
Kim, J., Kim, T. Y., Lee, M. S., Mun, J. Y., Ihm, C., & Kim, S. A. (2016). Exosome cargo reflects TGF-β1-mediated epithelial-to-mesenchymal transition (EMT) status in A549 human lung adenocarcinoma cells. Biochemical and Biophysical Research Communications, 478(2), 643-648.
Klingeborn, M., Dismuke, W. M., Skiba, N. P., Kelly, U., Stamer, W. D., & Bowes Rickman, C. (2017). Directional exosome proteomes reflect polarity-specific functions in retinal pigmented epithelium monolayers. Scientific Reports, 7(1), 4901.
Klingeborn, M., Stamer, W. D., & Bowes Rickman, C. (2018). Polarized exosome release from the retinal pigmented epithelium. Advances in Experimental Medicine and Biology, 1074, 539-544.
Kowal, J., Tkach, M., & Théry, C. (2014). Biogenesis and secretion of exosomes. Current Opinion in Cell Biology, 29, 116-125.
Kozlowski, M. R. (2012). RPE cell senescence: A key contributor to age-related macular degeneration. Medical Hypotheses, 78(4), 505-510.
Marmorstein, L. (2004). Association of EFEMP1 with malattia leventinese and age-related macular degeneration: A mini-review. Ophthalmic Genetics, 25(3), 219-226.
Marmorstein, L. Y., Munier, F. L., Arsenijevic, Y., Schorderet, D. F., McLaughlin, P. J., Chung, D., Traboulsi, E., & Marmorstein, A. D. (2002). Aberrant accumulation of EFEMP1 underlies drusen formation in Malattia Leventinese and age-related macular degeneration. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 13067-13072.
Matsui, T., Osaki, F., Hiragi, S., Sakamaki, Y., & Fukuda, M. (2021). ALIX and ceramide differentially control polarized small extracellular vesicle release from epithelial cells. EMBO Reports, 22(5), e51475.
Narendran, N., Guymer, R. H., Cain, M., & Baird, P. N. (2005). Analysis of the EFEMP1 gene in individuals and families with early onset drusen. Eye (London, England), 19(1), 11-15.
Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics (Oxford, England), 26(1), 139-140.
Shah, N., Ishii, M., Brandon, C., Ablonczy, Z., Cai, J., Liu, Y., Chou, C. J., & Rohrer, B. (2018). Extracellular vesicle-mediated long-range communication in stressed retinal pigment epithelial cell monolayers. Biochimica et biophysica acta. Molecular Basis of Disease, 1864(8), 2610-2622.
Shelke, G. V., Yin, Y., Jang, S. C., Lässer, C., Wennmalm, S., Hoffmann, H. J., Li, L., Gho, Y. S., Nilsson, J. A., & Lötvall, J. (2019). Endosomal signalling via exosome surface TGFβ-1. Journal of Extracellular Vesicles, 8(1), 1650458.
Sripathi, S. R., Hu, M. W., Liu, M. M., Wan, J., Cheng, J., Duan, Y., Mertz, J. L., Wahlin, K. J., Maruotti, J., Berlinicke, C. A., Qian, J., & Zack, D. J. (2021). Transcriptome landscape of epithelial to mesenchymal transition of human stem cell-derived RPE. Investigative Ophthalmology & Visual Science, 62(4), 1.
Sripathi, S. R., Hu, M. W., Turaga, R. C., Mertz, J., Liu, M. M., Wan, J., Maruotti, J., Wahlin, K. J., Berlinicke, C. A., Qian, J., & Zack, D. J. (2021). Proteome landscape of epithelial-to-mesenchymal transition (EMT) of retinal pigment epithelium shares commonalities with malignancy-associated EMT. Molecular & Cellular Proteomics: MCP, 20, 100131.
Stenkamp, D. L., Frey, R. A., Prabhudesai, S. N., & Raymond, P. A. (2000). Function for Hedgehog genes in zebrafish retinal development. Developmental Biology, 220(2), 238-252.
Stone, E. M., Lotery, A. J., Munier, F. L., Héon, E., Piguet, B., Guymer, R. H., Vandenburgh, K., Cousin, P., Nishimura, D., Swiderski, R. E., Silvestri, G., Mackey, D. A., Hageman, G. S., Bird, A. C., Sheffield, V. C., & Schorderet, D. F. (1999). A single EFEMP1 mutation associated with both Malattia Leventinese and Doyne honeycomb retinal dystrophy. Nature Genetics, 22(2), 199-202.
Tamiya, S., & Kaplan, H. J. (2016). Role of epithelial-mesenchymal transition in proliferative vitreoretinopathy. Experimental Eye Research, 142, 26-31.
Théry, C., Witwer, K. W., Aikawa, E., Alcaraz, M. J., Anderson, J. D., Andriantsitohaina, R., Antoniou, A., Arab, T., Archer, F., Atkin-Smith, G. K., Ayre, D. C., Bach, J. M., Bachurski, D., Baharvand, H., Balaj, L., Baldacchino, S., Bauer, N. N., Baxter, A. A., Bebawy, M., … & Zuba-Surma, E. K. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7(1), 1535750.
Touhami, S., Beguier, F., Augustin, S., Charles-Messance, H., Vignaud, L., Nandrot, E. F., Reichman, S., Forster, V., Mathis, T., Sahel, J. A., Bodaghi, B., Guillonneau, X., & Sennlaub, F. (2018). Chronic exposure to tumor necrosis factor alpha induces retinal pigment epithelium cell dedifferentiation. Journal of Neuroinflammation, 15(1), 85.
van de Vlekkert, D., Demmers, J., Nguyen, X. X., Campos, Y., Machado, E., Annunziata, I., Hu, H., Gomero, E., Qiu, X., Bongiovanni, A., Feghali-Bostwick, C. A., & d'Azzo, A. (2019). Excessive exosome release is the pathogenic pathway linking a lysosomal deficiency to generalized fibrosis. Science Advances, 5(7), eaav3270.
Väremo, L., Nielsen, J., & Nookaew, I. (2013). Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods. Nucleic Acids Research, 41(8), 4378-4391.
Vasaikar, S. V., Deshmukh, A. P., den Hollander, P., Addanki, S., Kuburich, N. A., Kudaravalli, S., Joseph, R., Chang, J. T., Soundararajan, R., & Mani, S. A. (2021). EMTome: A resource for pan-cancer analysis of epithelial-mesenchymal transition genes and signatures. British Journal of Cancer, 124(1), 259-269.
Vella, L. J. (2014). The emerging role of exosomes in epithelial-mesenchymal-transition in cancer. Frontiers in Oncology, 4, 361.
Vincent, A., Munier, F. L., Vandenhoven, C. C., Wright, T., Westall, C. A., & Héon, E. (2012). The characterization of retinal phenotype in a family with C1QTNF5-related late-onset retinal degeneration. Retina (Philadelphia, Pa.), 32(8), 1643-1651.
Webber, J., Steadman, R., Mason, M. D., Tabi, Z., & Clayton, A. (2010). Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Research, 70(23), 9621-9630.
Weber, B. H., Vogt, G., Pruett, R. C., Stöhr, H., & Felbor, U. (1994). Mutations in the tissue inhibitor of metalloproteinases-3 (TIMP3) in patients with Sorsby's fundus dystrophy. Nature Genetics, 8(4), 352-356.
Weber, S. R., Zhou, M., Zhao, Y., & Sundstrom, J. M. (2020). Exosomes in retinal diseases. In Exosomes (pp. 415-431). Academic Press.
Wu, D., Kanda, A., Liu, Y., Kase, S., Noda, K., & Ishida, S. (2019). Galectin-1 promotes choroidal neovascularization and subretinal fibrosis mediated via epithelial-mesenchymal transition. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 33(2), 2498-2513.
Xu, J., Lamouille, S., & Derynck, R. (2009). TGF-beta-induced epithelial to mesenchymal transition. Cell Research, 19(2), 156-172.
Yang, J., Antin, P., Berx, G., Blanpain, C., Brabletz, T., Bronner, M., Campbell, K., Cano, A., Casanova, J., Christofori, G., Dedhar, S., Derynck, R., Ford, H. L., Fuxe, J., García de Herreros, A., Goodall, G. J., Hadjantonakis, A. K., Huang, R. Y. J., Kalcheim, C., … EMT International Association (TEMTIA). (2020). Guidelines and definitions for research on epithelial-mesenchymal transition. Nature Reviews. Molecular Cell Biology, 21(6), 341-352.
Yin, Y., Shelke, G. V., Lässer, C., Brismar, H., & Lötvall, J. (2020). Extracellular vesicles from mast cells induce mesenchymal transition in airway epithelial cells. Respiratory Research, 21(1), 101.
Yuyama, K., Yamamoto, N., & Yanagisawa, K. (2008). Accelerated release of exosome-associated GM1 ganglioside (GM1) by endocytic pathway abnormality: Another putative pathway for GM1-induced amyloid fibril formation. Journal of Neurochemistry, 105(1), 217-224.
Zhang, H., Freitas, D., Kim, H. S., Fabijanic, K., Li, Z., Chen, H., Mark, M. T., Molina, H., Martin, A. B., Bojmar, L., Fang, J., Rampersaud, S., Hoshino, A., Matei, I., Kenific, C. M., Nakajima, M., Mutvei, A. P., Sansone, P., Buehring, W., … Lyden, D. (2018). Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nature Cell Biology, 20(3), 332-343.
Zhang, Y., & Marmorstein, L. Y. (2010). Focus on molecules: Fibulin-3 (EFEMP1). Experimental Eye Research, 90(3), 374-375.
Zhou, M., Geathers, J. S., Grillo, S. L., Weber, S. R., Wang, W., Zhao, Y., & Sundstrom, J. M. (2020). Role of epithelial-mesenchymal transition in retinal pigment epithelium dysfunction. Frontiers in Cell and Developmental Biology, 8, 501.
Zhou, M., Weber, S. R., Zhao, Y., Chen, H., Barber, A. J., Grillo, S. L., Wills, C. A., Wang, H. G., Hulleman, J. D., & Sundstrom, J. M. (2020). Expression of R345W-Fibulin-3 induces epithelial-mesenchymal transition in retinal pigment epithelial cells. Frontiers in Cell and Developmental Biology, 8, 469.
Zhou, M., Weber, S. R., Zhao, Y., Chen, H., & Sundstrom, J. M. (2020). Chapter 2 - Methods for exosome isolation and characterization. Exosomes, 23-38. - Contributed Indexing: Keywords: EMT; Fibulin-3; RPE; TGFβ; extracellular vesicles
- الرقم المعرف: 0 (fibulin)
0 (Hedgehog Proteins)
0 (Transforming Growth Factor beta)
EC 1.13.12.- (Luciferases)
0 (Retinal Pigments) - الموضوع: Date Created: 20231019 Date Completed: 20231023 Latest Revision: 20231024
- الموضوع: 20231025
- الرقم المعرف: PMC10585439
- الرقم المعرف: 10.1002/jev2.12373
- الرقم المعرف: 37855063
- المصدر:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login
حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.