References: Titulaer, M. J. et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: An observational cohort study. Lancet Neurol. 12, 157–165. https://doi.org/10.1016/S1474-4422(12)70310-1 (2013). (PMID: 10.1016/S1474-4422(12)70310-1232906303563251)
Dubey, D. et al. Autoimmune encephalitis epidemiology and a comparison to infectious encephalitis. Ann. Neurol. 83, 166–177. https://doi.org/10.1002/ana.25131 (2018). (PMID: 10.1002/ana.25131292932736011827)
Graus, F. et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol. 15, 391–404. https://doi.org/10.1016/S1474-4422(15)00401-9 (2016). (PMID: 10.1016/S1474-4422(15)00401-9269069645066574)
Ruiz-Garcia, R. et al. Limitations of a commercial assay as diagnostic test of autoimmune encephalitis. Front. Immunol. 12, 691536. https://doi.org/10.3389/fimmu.2021.691536 (2021). (PMID: 10.3389/fimmu.2021.691536342677588276168)
Thaler, F. S. et al. Rituximab treatment and long-term outcome of patients with autoimmune encephalitis: Real-world evidence from the GENERATE registry. Neurol. Neuroimmunol. Neuroinflamm. https://doi.org/10.1212/NXI.0000000000001088 (2021). (PMID: 10.1212/NXI.0000000000001088346972248546742)
Gross, C. C. et al. Classification of neurological diseases using multi-dimensional CSF analysis. Brain 144, 2625–2634. https://doi.org/10.1093/brain/awab147 (2021). (PMID: 10.1093/brain/awab147338483198557345)
Kaplan, B. et al. Free light chain monomer-dimer patterns in the diagnosis of multiple sclerosis. J. Immunol. Methods 390, 74–80. https://doi.org/10.1016/j.jim.2013.01.010 (2013). (PMID: 10.1016/j.jim.2013.01.01023376556)
Konen, F. F. et al. Kappa free light chains in cerebrospinal fluid in inflammatory and non-inflammatory neurological diseases. Brain Sci. https://doi.org/10.3390/brainsci12040475 (2022). (PMID: 10.3390/brainsci12040475354480069030640)
Konen, F. F. et al. The impact of immunomodulatory treatment on kappa free light chains as biomarker in neuroinflammation. Cells https://doi.org/10.3390/cells9040842 (2020). (PMID: 10.3390/cells9040842322443627226742)
Leurs, C. E. et al. Kappa free light chains is a valid tool in the diagnostics of MS: A large multicenter study. Mult. Scler. 26, 912–923. https://doi.org/10.1177/1352458519845844 (2020). (PMID: 10.1177/135245851984584431066634)
Susse, M. et al. Free light chains kappa can differentiate between myelitis and noninflammatory myelopathy. Neurol. Neuroimmunol. Neuroinflamm. https://doi.org/10.1212/NXI.0000000000000892 (2020). (PMID: 10.1212/NXI.0000000000000892329486487524577)
Hannich, M. J. et al. Kappa free light chains in the context of blood contamination, and other IgA- and IgM-related cerebrospinal fluid disease pattern. Cells https://doi.org/10.3390/cells10030616 (2021). (PMID: 10.3390/cells10030616337994947998777)
Schwenkenbecher, P. et al. The influence of blood contamination on cerebrospinal fluid diagnostics. Front. Neurol. 10, 584. https://doi.org/10.3389/fneur.2019.00584 (2019). (PMID: 10.3389/fneur.2019.00584312495476582628)
Reiber, H., Zeman, D., Kusnierova, P., Mundwiler, E. & Bernasconi, L. Diagnostic relevance of free light chains in cerebrospinal fluid—the hyperbolic reference range for reliable data interpretation in quotient diagrams. Clin. Chim. Acta 497, 153–162. https://doi.org/10.1016/j.cca.2019.07.027 (2019). (PMID: 10.1016/j.cca.2019.07.02731351929)
Schwenkenbecher, P. et al. Reiber’s diagram for kappa free light chains: The new standard for assessing intrathecal synthesis?. Diagnostics 9, 194. https://doi.org/10.3390/diagnostics9040194 (2019). (PMID: 10.3390/diagnostics9040194317440966963502)
Guasp, M. et al. Clinical, neuroimmunologic, and CSF investigations in first episode psychosis. Neurology 97, e61–e75. https://doi.org/10.1212/WNL.0000000000012191 (2021). (PMID: 10.1212/WNL.000000000001219133980703)
Irani, S. R. et al. N-methyl-D-aspartate antibody encephalitis: Temporal progression of clinical and paraclinical observations in a predominantly non-paraneoplastic disorder of both sexes. Brain 133, 1655–1667. https://doi.org/10.1093/brain/awq113 (2010). (PMID: 10.1093/brain/awq113205112822877907)
Durr, M. et al. CSF findings in acute NMDAR and LGI1 antibody-associated autoimmune encephalitis. Neurologyneuroimmunol. Neuroinflamm. https://doi.org/10.1212/NXI.0000000000001086 (2021). (PMID: 10.1212/NXI.0000000000001086)
Blinder, T. & Lewerenz, J. Cerebrospinal fluid findings in patients with autoimmune encephalitis-a systematic analysis. Front. Neurol. 10, 804. https://doi.org/10.3389/fneur.2019.00804 (2019). (PMID: 10.3389/fneur.2019.00804314042576670288)
Toscano, S. et al. A dynamic interpretation of kappaFLC index for the diagnosis of multiple sclerosis: A change of perspective. J. Neurol. https://doi.org/10.1007/s00415-023-11952-3 (2023). (PMID: 10.1007/s00415-023-11952-33763901610632300)
Gudowska-Sawczuk, M., Czupryna, P., Moniuszko-Malinowska, A., Pancewicz, S. & Mroczko, B. Free immunoglobulin light chains in patients with tick-borne encephalitis: Before and after treatment. J. Clin. Med. https://doi.org/10.3390/jcm10132922 (2021). (PMID: 10.3390/jcm10132922344419798397099)
Flanagan, E. P. et al. Autoimmune encephalitis misdiagnosis in adults. JAMA Neurol. 80, 30–39. https://doi.org/10.1001/jamaneurol.2022.4251 (2023). (PMID: 10.1001/jamaneurol.2022.425136441519)
Dalmau, J. & Graus, F. Diagnostic criteria for autoimmune encephalitis: Utility and pitfalls for antibody-negative disease. Lancet Neurol. 22, 529–540. https://doi.org/10.1016/S1474-4422(23)00083-2 (2023). (PMID: 10.1016/S1474-4422(23)00083-237210100)
Lee, W. J. et al. Seronegative autoimmune encephalitis: Clinical characteristics and factors associated with outcomes. Brain 145, 3509–3521. https://doi.org/10.1093/brain/awac166 (2022). (PMID: 10.1093/brain/awac16635512357)
Charidimou, A. et al. The Boston criteria version 2.0 for cerebral amyloid angiopathy: A multicentre, retrospective, MRI-neuropathology diagnostic accuracy study. Lancet Neurol. 21, 714–725. https://doi.org/10.1016/S1474-4422(22)00208-3 (2022). (PMID: 10.1016/S1474-4422(22)00208-3358419109389452)
Hoglinger, G. U. et al. Clinical diagnosis of progressive supranuclear palsy: The movement disorder society criteria. Mov. Disord. 32, 853–864. https://doi.org/10.1002/mds.26987 (2017). (PMID: 10.1002/mds.26987284670285516529)
Kretzschmar, H. A., Ironside, J. W., DeArmond, S. J. & Tateishi, J. Diagnostic criteria for sporadic Creutzfeldt-Jakob disease. Arch. Neurol. 53, 913–920. https://doi.org/10.1001/archneur.1996.00550090125018 (1996). (PMID: 10.1001/archneur.1996.005500901250188815857)
McKhann, G. M. et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. J. Alzheimer’s Assoc. 7, 263–269. https://doi.org/10.1016/j.jalz.2011.03.005 (2011). (PMID: 10.1016/j.jalz.2011.03.005)
Rascovsky, K. et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134, 2456–2477. https://doi.org/10.1093/brain/awr179 (2011). (PMID: 10.1093/brain/awr179218108903170532)
Shefner, J. M. et al. A proposal for new diagnostic criteria for ALS. Clin. Neurophysiol. 131, 1975–1978. https://doi.org/10.1016/j.clinph.2020.04.005 (2020). (PMID: 10.1016/j.clinph.2020.04.00532387049)
Wenning, G. K. et al. The movement disorder society criteria for the diagnosis of multiple system atrophy. Mov. Disord. 37, 1131–1148. https://doi.org/10.1002/mds.29005 (2022). (PMID: 10.1002/mds.29005354454199321158)
Teunissen, C. et al. Consensus definitions and application guidelines for control groups in cerebrospinal fluid biomarker studies in multiple sclerosis. Mult. Scler. 19, 1802–1809. https://doi.org/10.1177/1352458513488232 (2013). (PMID: 10.1177/135245851348823223695446)
Reiber, H. Cerebrospinal fluid–physiology, analysis and interpretation of protein patterns for diagnosis of neurological diseases. Mult. Scler. 4, 99–107. https://doi.org/10.1177/135245859800400302 (1998). (PMID: 10.1177/1352458598004003029762655)
Coyle, P. K. & Johnson, C. Optimal detection of oligoclonal bands in CSF by silver stain. Neurology 33, 1510–1512. https://doi.org/10.1212/wnl.33.11.1510 (1983). (PMID: 10.1212/wnl.33.11.15106195553)
Andersson, M. et al. Cerebrospinal fluid in the diagnosis of multiple sclerosis: A consensus report. J. Neurol. Neurosurg. Psychiatry 57, 897–902. https://doi.org/10.1136/jnnp.57.8.897 (1994). (PMID: 10.1136/jnnp.57.8.89780571101073070)
Lepennetier, G. et al. Cytokine and immune cell profiling in the cerebrospinal fluid of patients with neuro-inflammatory diseases. J. Neuroinflamm. 16, 219. https://doi.org/10.1186/s12974-019-1601-6 (2019). (PMID: 10.1186/s12974-019-1601-6)
Levey, A. S. et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 150, 604–612. https://doi.org/10.7326/0003-4819-150-9-200905050-00006 (2009). (PMID: 10.7326/0003-4819-150-9-200905050-00006194148392763564)
No Comments.