Item request has been placed!
×
Item request cannot be made.
×
Processing Request
SMYD2 Imparts Gemcitabine Resistance to Pancreatic Adenocarcinoma Cells by Upregulating EVI2A.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- المؤلفون: Jin L;Jin L; Qian D; Qian D; Tang X; Tang X; Huang Y; Huang Y; Zou J; Zou J; Wu Z; Wu Z
- المصدر:
Molecular biotechnology [Mol Biotechnol] 2024 Oct; Vol. 66 (10), pp. 2920-2933. Date of Electronic Publication: 2023 Oct 09.- نوع النشر :
Journal Article- اللغة:
English - المصدر:
- معلومة اضافية
- المصدر: Publisher: Springer Country of Publication: Switzerland NLM ID: 9423533 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-0305 (Electronic) Linking ISSN: 10736085 NLM ISO Abbreviation: Mol Biotechnol Subsets: MEDLINE
- بيانات النشر: Publication: [Cham] : Springer
Original Publication: Totowa, NJ : Humana Press, c1994- - الموضوع: Gemcitabine* ; Deoxycytidine*/analogs & derivatives ; Deoxycytidine*/pharmacology ; Drug Resistance, Neoplasm*/genetics ; Pancreatic Neoplasms*/genetics ; Pancreatic Neoplasms*/metabolism ; Pancreatic Neoplasms*/pathology ; Pancreatic Neoplasms*/drug therapy ; Histone-Lysine N-Methyltransferase*/genetics ; Histone-Lysine N-Methyltransferase*/metabolism; Humans ; Cell Line, Tumor ; Gene Expression Regulation, Neoplastic ; Adenocarcinoma/genetics ; Adenocarcinoma/drug therapy ; Adenocarcinoma/pathology ; Adenocarcinoma/metabolism ; Up-Regulation ; Cell Proliferation/drug effects ; Apoptosis/drug effects ; Macrophages/metabolism ; Macrophages/immunology ; Antimetabolites, Antineoplastic/pharmacology ; Cell Movement
- نبذة مختصرة : Although gemcitabine (GEM) is the first‑line drug for advanced pancreatic adenocarcinoma (PAAD), the development of GEM resistance severely limits the effectiveness of this chemotherapy. This study investigated the mechanisms of ecotropic viral integration site 2 A (EVI2A) for resistance to GEM and immune evasion in PAAD. GEM resistance-related biomarkers were predicted using GEO datasets, and GEM-resistant PAAD cells were generated. EVI2A was found expressed highly in GEM-resistant PAAD cells. Gain-of-function analyses revealed that EVI2A encouraged the proliferation and motility of GEM-resistant cells and prevented apoptosis. In addition, EVI2A reduced T cell effector activation. SMYD2 was overexpressed in GEM-resistant cells, and SMYD2 enhanced H3K36me2 modification of EVI2A, thereby promoting EVI2A expression. SMYD2 reduced the sensitivity of GEM-resistant cells, which was reversed by EVI2A knockdown. SMYD2 increased the amount of M2 macrophages (co-cultured with PAAD cells) and decreased T cell effector activation (co-cultured with macrophage supernatant), and the number of M2 macrophages was decreased and T cell effectors were activated following EVI2A knockdown. Our findings indicate that EVI2A, manipulated by the SMYD2-H3K36me2 epigenetic axis, promoted GEM resistance and M2 macrophage-mediated immune evasion in PAAD. Therefore, EVI2A might represent a therapeutic target for overcoming GEM resistance and immunosuppressive environment in PAAD.
(© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.) - References: Ryan, D. P., Hong, T. S., & Bardeesy, N. (2014). Pancreatic adenocarcinoma. New England Journal of Medicine, 371(11), 1039–1049. https://doi.org/10.1056/NEJMra1404198. (PMID: 10.1056/NEJMra1404198)
McGuigan, A., Kelly, P., Turkington, R. C., Jones, C., Coleman, H. G., & McCain, R. S. (2018). Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World Journal of Gastroenterology, 24(43), 4846–4861. https://doi.org/10.3748/wjg.v24.i43.4846. (PMID: 10.3748/wjg.v24.i43.48466250924)
Binenbaum, Y., Na’ara, S., & Gil, Z. (2015). Gemcitabine resistance in pancreatic ductal adenocarcinoma. Drug Resistance Updates, 23, 55–68. https://doi.org/10.1016/j.drup.2015.10.002. (PMID: 10.1016/j.drup.2015.10.002)
Miao, H., Chen, X., & Luan, Y. (2020). Small molecular Gemcitabine Prodrugs for Cancer Therapy. Current Medicinal Chemistry, 27(33), 5562–5582. https://doi.org/10.2174/0929867326666190816230650. (PMID: 10.2174/0929867326666190816230650)
Martinez-Bosch, N., Vinaixa, J., & Navarro, P. (2018). Immune evasion in pancreatic cancer: From mechanisms to therapy. Cancers (Basel), 10(1), 6. https://doi.org/10.3390/cancers10010006. (PMID: 10.3390/cancers10010006)
Timmer, F. E. F., Geboers, B., Nieuwenhuizen, S., Dijkstra, M., Schouten, E. A. C., Puijk, R. S., de Vries, J. J. J., van den Tol, M. P., Bruynzeel, A. M. E., Streppel, M. M., Wilmink, J. W., van der Vliet, H. J., Meijerink, M. R., Scheffer, H. J., & de Gruijl, T. D. (2021). Pancreatic cancer and immunotherapy: A clinical overview. Cancers (Basel), 13(16), 4138. https://doi.org/10.3390/cancers13164138. (PMID: 10.3390/cancers13164138)
Ren, M., Zhang, J., Zong, R., & Sun, H. (2023). A novel pancreatic cancer hypoxia status related gene signature for prognosis and therapeutic responses. Molecular Biotechnology, 148, 1–20. https://doi.org/10.1007/s12033-023-00807-x. (PMID: 10.1007/s12033-023-00807-x)
Qiu, Z., Sun, W., Gao, S., Zhou, H., Tan, W., Cao, M., & Huang, W. (2017). A 16-gene signature predicting prognosis of patients with oral tongue squamous cell carcinoma. PeerJ, 5, e4062. https://doi.org/10.7717/peerj.4062. (PMID: 10.7717/peerj.40625695251)
Sim, W., Lim, W. M., Hii, L. W., Leong, C. O., & Mai, C. W. (2022). Targeting pancreatic cancer immune evasion by inhibiting histone deacetylases. World Journal of Gastroenterology, 28(18), 1934–1945. https://doi.org/10.3748/wjg.v28.i18.1934. (PMID: 10.3748/wjg.v28.i18.19349150054)
Liu, X. Y., Guo, C. H., Xi, Z. Y., Xu, X. Q., Zhao, Q. Y., Li, L. S., & Wang, Y. (2021). Histone methylation in pancreatic cancer and its clinical implications. World Journal of Gastroenterology, 27(36), 6004–6024. https://doi.org/10.3748/wjg.v27.i36.6004. (PMID: 10.3748/wjg.v27.i36.60048476335)
Padilla, A., Manganaro, J. F., Huesgen, L., Roess, D. A., Brown, M. A., & Crans, D. C. (2023). Targeting epigenetic changes mediated by members of the SMYD family of lysine methyltransferases. Molecules, 28(4), 2000. https://doi.org/10.3390/molecules28042000. (PMID: 10.3390/molecules280420009967872)
Reynoird, N., Mazur, P. K., Stellfeld, T., Flores, N. M., Lofgren, S. M., Carlson, S. M., Brambilla, E., Hainaut, P., Kaznowska, E. B., Arrowsmith, C. H., Khatri, P., Stresemann, C., Gozani, O., & Sage, J. (2016). Coordination of stress signals by the lysine methyltransferase SMYD2 promotes pancreatic cancer. Genes & Development, 30(7), 772–785. https://doi.org/10.1101/gad.275529.115. (PMID: 10.1101/gad.275529.115)
Wang, B., Shen, C., Li, Y., Zhang, T., Huang, H., Ren, J., Hu, Z., Xu, J., & Xu, B. (2019). Oridonin overcomes the gemcitabine resistant PANC-1/Gem cells by regulating GST pi and LRP/1 ERK/JNK signalling. OncoTargets and therapy , 12, 5751–5765. https://doi.org/10.2147/OTT.S208924. (PMID: 10.2147/OTT.S2089246645696)
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262. (PMID: 10.1006/meth.2001.1262)
Yan, Z., Ohuchida, K., Fei, S., Zheng, B., Guan, W., Feng, H., Kibe, S., Ando, Y., Koikawa, K., Abe, T., Iwamoto, C., Shindo, K., Moriyama, T., Nakata, K., Miyasaka, Y., Ohtsuka, T., Mizumoto, K., Hashizume, M., & Nakamura, M. (2019). Inhibition of ERK1/2 in cancer-associated pancreatic stellate cells suppresses cancer-stromal interaction and metastasis. Journal of Experimental & Clinical Cancer Research, 38(1), 221. https://doi.org/10.1186/s13046-019-1226-8. (PMID: 10.1186/s13046-019-1226-8)
Wang, W., Marinis, J. M., Beal, A. M., Savadkar, S., Wu, Y., Khan, M., Taunk, P. S., Wu, N., Su, W., Wu, J., Ahsan, A., Kurz, E., Chen, T., Yaboh, I., Li, F., Gutierrez, J., Diskin, B., Hundeyin, M., Reilly, M., … Miller, G. (2018). RIP1 kinase drives macrophage-mediated adaptive Immune Tolerance in Pancreatic Cancer. Cancer Cell, 34(5), 757–774. https://doi.org/10.1016/j.ccell.2018.10.006. (PMID: 10.1016/j.ccell.2018.10.0066836726)
Li, D. K., & Wang, G. H. (2022). Asiaticoside reverses M2 phenotype macrophage polarization-evoked osteosarcoma cell malignant behaviour by TRAF6/NF-kappaB inhibition. Pharmaceutical Biology, 60(1), 1635–1645. https://doi.org/10.1080/13880209.2022.2109688. (PMID: 10.1080/13880209.2022.21096889415541)
Zheng, Y., Ren, S., Zhang, Y., Liu, S., Meng, L., Liu, F., Gu, L., Ai, N., & Sang, M. (2022). Circular RNA circWWC3 augments breast cancer progression through promoting M2 macrophage polarization and tumor immune escape via regulating the expression and secretion of IL-4. Cancer Cell International, 22(1), 264. https://doi.org/10.1186/s12935-022-02686-9. (PMID: 10.1186/s12935-022-02686-99396792)
Li, Y., Tan, Y., Li, X., Chen, X., Wang, L., Zhang, L., Xu, S., Huang, K., Shu, W., Liang, H., & Chen, M. (2022). Loss of LXN promotes macrophage M2 polarization and PD-L2 expression contributing cancer immune-escape in mice. Cell Death Discovery, 8(1), 440. https://doi.org/10.1038/s41420-022-01227-7. (PMID: 10.1038/s41420-022-01227-79630456)
Liu, J., Zhu, C., Zhang, L., Lu, H., Wang, Z., Lv, J., & Fan, C. (2020). MicroRNA-1469-5p promotes the invasion and proliferation of pancreatic cancer cells via direct regulating the NDRG1/NF-kappaB/E-cadherin axis. Human Cell, 33(4), 1176–1185. https://doi.org/10.1007/s13577-020-00399-7. (PMID: 10.1007/s13577-020-00399-7)
Tiffon, C. (2018). Histone deacetylase inhibition restores expression of hypoxia-inducible protein NDRG1 in pancreatic cancer. Pancreas, 47(2), 200–207. https://doi.org/10.1097/MPA.0000000000000982. (PMID: 10.1097/MPA.0000000000000982)
Li, S., Yang, F., Yang, Y. K., & Zhou, Y. (2019). Increased expression of ecotropic viral integration site 2A indicates a poor prognosis and promotes osteosarcoma evolution through activating MEK/ERK pathway. Journal of Receptor and Signal Transduction Research, 39(4), 368–372. https://doi.org/10.1080/10799893.2019.1669182. (PMID: 10.1080/10799893.2019.1669182)
Mini, E., Nobili, S., Caciagli, B., Landini, I., & Mazzei, T. (2006). Cellular pharmacology of gemcitabine. Annals of Oncology, 17(5), v7–v12. https://doi.org/10.1093/annonc/mdj941. (PMID: 10.1093/annonc/mdj941)
Mantovani, A., Marchesi, F., Malesci, A., Laghi, L., & Allavena, P. (2017). Tumour-associated macrophages as treatment targets in oncology. Nature Reviews Clinical Oncology, 14(7), 399–416. https://doi.org/10.1038/nrclinonc.2016.217. (PMID: 10.1038/nrclinonc.2016.2175480600)
Fang, W., Zhou, T., Shi, H., Yao, M., Zhang, D., Qian, H., Zeng, Q., Wang, Y., Jin, F., Chai, C., & Chen, T. (2021). Progranulin induces immune escape in breast cancer via up-regulating PD-L1 expression on tumor-associated macrophages (TAMs) and promoting CD8(+) T cell exclusion. Journal of Experimental & Clinical Cancer Research, 40(1), 4. https://doi.org/10.1186/s13046-020-01786-6. (PMID: 10.1186/s13046-020-01786-6)
Huber, M., Brehm, C. U., Gress, T. M., Buchholz, M., Alashkar Alhamwe, B., von Strandmann, E. P., Slater, E. P., Bartsch, J. W., Bauer, C., & Lauth, M. (2020). The immune microenvironment in pancreatic cancer. International Journal of Molecular Sciences, 21(19), 7307. https://doi.org/10.3390/ijms21197307. (PMID: 10.3390/ijms211973077583843)
Kwon, B. (2021). The two faces of IL-2: A key driver of CD8(+) T-cell exhaustion. Cellular & Molecular Immunology, 18(7), 1641–1643. https://doi.org/10.1038/s41423-021-00712-w. (PMID: 10.1038/s41423-021-00712-w)
Lu, C., Liu, Z., Klement, J. D., Yang, D., Merting, A. D., Poschel, D., Albers, T., Waller, J. L., Shi, H., & Liu, K. (2021). WDR5-H3K4me3 epigenetic axis regulates OPN expression to compensate PD-L1 function to promote pancreatic cancer immune escape. Journal For Immunotherapy Of Cancer, 9(7), e002624. https://doi.org/10.1136/jitc-2021-002624. (PMID: 10.1136/jitc-2021-0026248323468)
Alshammari, E., Zhang, Y. X., & Yang, Z. (2022). Mechanistic and functional extrapolation of SET and MYND domain-containing protein 2 to pancreatic cancer. World Journal of Gastroenterology, 28(29), 3753–3766. https://doi.org/10.3748/wjg.v28.i29.3753. (PMID: 10.3748/wjg.v28.i29.37539367238)
Lai, Y., & Yang, Y. (2022). SMYD2 facilitates cancer cell malignancy and xenograft tumor development through ERBB2-mediated FUT4 expression in colon cancer. Molecular & Cellular Biochemistry, 477(9), 2149–2159. https://doi.org/10.1007/s11010-020-03738-2. (PMID: 10.1007/s11010-020-03738-2)
Gu, L., Xu, F., Zhang, X., & Gu, Z. (2022). Baicalein Inhibits the SMYD2/RPS7 Signaling Pathway to Inhibit the Occurrence and Metastasis of Lung Cancer. Journal of Oncology, 2022, 3796218. https://doi.org/10.1155/2022/3796218. (PMID: 10.1155/2022/37962189012617)
Xu, K., Ding, J., Zhou, L., Li, D., Luo, J., Wang, W., Shang, M., Lin, B., Zhou, L., & Zheng, S. (2022). SMYD2 promotes hepatocellular carcinoma progression by reprogramming glutamine metabolism via c-Myc/GLS1 axis. Cells, 12(1), 25. https://doi.org/10.3390/cells12010025. (PMID: 10.3390/cells120100259818721)
Parmar, N., Chandrakar, P., & Kar, S. (2020). Leishmania donovani subverts host Immune response by epigenetic reprogramming of macrophage M(lipopolysaccharides + IFN-gamma)/M(IL-10) polarization. The Journal of Immunology, 204(10), 2762–2778. https://doi.org/10.4049/jimmunol.1900251. (PMID: 10.4049/jimmunol.1900251) - Grant Information: KJ2020A0614 Key Natural Science Foundation of Anhui Provincial Department of Education; GXXT-2020-023 Anhui Provincial Department of Education University Collaborative Research and Innovation Natural Science Fund
- Contributed Indexing: Keywords: EVI2A; Gemcitabine; Immune evasion; Pancreatic adenocarcinoma; SMYD2
- الرقم المعرف: 0 (Gemcitabine)
0W860991D6 (Deoxycytidine)
EC 2.1.1.43 (Histone-Lysine N-Methyltransferase)
EC 2.1.1.43 (SMYD2 protein, human)
0 (Antimetabolites, Antineoplastic) - الموضوع: Date Created: 20231009 Date Completed: 20241010 Latest Revision: 20241015
- الموضوع: 20241016
- الرقم المعرف: 10.1007/s12033-023-00908-7
- الرقم المعرف: 37812330
- المصدر:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login
حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.