Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Impact of CD40 gene polymorphisms on the risk of cervical squamous cell carcinoma: a case-control study.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: BioMed Central Country of Publication: England NLM ID: 100967800 Publication Model: Electronic Cited Medium: Internet ISSN: 1471-2407 (Electronic) Linking ISSN: 14712407 NLM ISO Abbreviation: BMC Cancer Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : BioMed Central, [2001-
    • الموضوع:
    • نبذة مختصرة :
      Background: Cervical cancer is the fourth most common cancer among women worldwide. Genome-wide association studies have revealed multiple susceptible genes and their polymorphisms for cervical cancer risk. Therefore, we aimed to investigate the correlation between single nucleotide polymorphisms (SNPs) of the CD40 gene and susceptibility to cervical squamous cell carcinoma (CSCC) in a population from the northeastern Han Chinese population.
      Methods: The three SNPs (rs1800686, rs3765459, and rs4810485) of the CD40 gene were analyzed by multiplex polymerase chain reaction (PCR) combined with next-generation sequencing methods in 421 patients with CSCC, 594 patients with high-grade squamous intraepithelial lesions (HSIL), and 504 healthy females. Multivariate logistic regression analysis was used to analyze the potential relationship between CD40 gene polymorphisms and CSCC, or HSIL.
      Results: Our research results showed the AA genotype of rs1800686 had a protective effect on CSCC in comparison to the GG genotype and AG+GG genotypes (AA vs. GG: p = 0.0389 and AA vs. AG+GG: p = 0.0280, respectively). After FDR correction, the results were still statistically significant (p = 0.0389 and p = 0.0389, respectively). Similarly, rs3765459 showed a reduced risk association for CSCC in the codominant and recessive models (AA vs. GG: p = 0.0286 and AA vs. AG+GG: p = 0.0222, respectively). Significant differences remained after FDR correction (p = 0.0286 and p = 0.0286, respectively). However, these differences were no longer significant after the Bonferroni correction. In addition, the genotypes for the rs4810485 polymorphisms were associated with parity of the patients with CSCC. The genotypes for the rs3765459 polymorphisms were significantly correlated with the D-dimer of the patients with CSCC. The 3 SNPs genotypes of the CD40 gene were closely related to the squamous cell carcinoma antigen (SCC) of the patients with HSIL.
      Conclusions: The CD40 gene may play a role in the occurrence and development of CSCC.
      (© 2023. BioMed Central Ltd., part of Springer Nature.)
    • References:
      Das M. WHO launches strategy to accelerate elimination of cervical cancer[J]. Lancet Oncol. 2021;22(1):20–1. https://doi.org/10.1016/S1470-2045(20)30729-4 . (PMID: 10.1016/S1470-2045(20)30729-433248466)
      Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 Countries[J]. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660 . (PMID: 10.3322/caac.2166033538338)
      Cao W, Chen HD, Yu YW, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chin Med J (Engl). 2021;134(7):783–91. https://doi.org/10.1097/CM9.0000000000001474 . (PMID: 10.1097/CM9.000000000000147433734139)
      Danolic D, Heffer M, Wagner J, et al. Role of ganglioside biosynthesis genetic polymorphism in cervical cancer development[J]. J Obstet Gynaecol. 2020;40(8):1127–32. https://doi.org/10.1080/01443615.2019.1692801 . (PMID: 10.1080/01443615.2019.169280131847655)
      Ginsburg O, Horton R. A Lancet Commission on women and cancer[J]. Lancet. 2020;396(10243):11–3. https://doi.org/10.1016/S0140-6736(20)31479-3 . (PMID: 10.1016/S0140-6736(20)31479-332622382)
      Li J, Gao JJ, Li N, et al. Distribution of human papillomavirus genotypes in western China and their association with cervical cancer and precancerous lesions[J]. Arch Virol. 2021;166(3):853–62. https://doi.org/10.1007/s00705-021-04960-z . (PMID: 10.1007/s00705-021-04960-z33486629)
      Xu H, Zhang J. [Interpretation of updated pathological contents for cervical cancer in NCCN clinical practice guidelines, version 1, 2020][J]. Zhonghua Bing Li Xue Za Zhi. 2021;50(1):9–13. https://doi.org/10.3760/cma.j.cn112151-20200712-00548 . (PMID: 10.3760/cma.j.cn112151-20200712-0054833396980)
      Nahand JS, Taghizadeh-Boroujeni S, Karimzadeh M, Borran S, Pourhanifeh MH, Moghoofei M, et al. microRNAs: New prognostic, diagnostic, and therapeutic biomarkers in cervical cancer. J Cell Physiol. 2019;234:17064–99. (PMID: 10.1002/jcp.2845730891784)
      Magnusson PK, Lichtenstein P, Gyllensten UB. Heritability of cervical tumours. Int J Cancer. 2000;88:698–701. (PMID: 10.1002/1097-0215(20001201)88:5<698::AID-IJC3>3.0.CO;2-J11072236)
      Bahrami A, Hasanzadeh M, Shahidsales S, et al. Genetic susceptibility in cervical cancer: from bench to bedside[J]. J Cell Physiol. 2018;233(3):1929–39. https://doi.org/10.1002/jcp.26019 . (PMID: 10.1002/jcp.2601928542881)
      Jendoubi-Ferchichi M, Satouri L, Ghoul F, Malek-Mellouli M, Derbel AM, Makni MK, et al. Phylogeny and classification of human papillomavirus (HPV)16 and HPV18 variants based on E6 and L1 genes in tunisian women with cervical lesions. Asian Pac J Cancer Prev. 2018;19(12):3361–6. https://doi.org/10.31557/APJCP.2018.19.12.3361 . (PMID: 10.31557/APJCP.2018.19.12.3361305833416428538)
      Graham SV. Human papillomavirus: gene expression, regulation and prospects for novel diagnostic methods and antiviral therapies. Future Microbiol. 2010;5(10):1493–506. https://doi.org/10.2217/fmb.10.107 . (PMID: 10.2217/fmb.10.10721073310)
      Horvath CA, Boulet GA, Renoux VM, Delvenne PO, Bogers JP. Mechanisms of cell entry by human papillomaviruses: an overview. Virol J. 2010;7:11. https://doi.org/10.1186/1743-422X-7-11 . (PMID: 10.1186/1743-422X-7-11200891912823669)
      Burd EM. Human papillomavirus and cervical cancer. Clin Microbiol Rev. 2003;16(1):1–17. https://doi.org/10.1128/CMR.16.1.1-17.2003 . (PMID: 10.1128/CMR.16.1.1-17.200312525422145302)
      Bletsa G, Zagouri F, Amoutzias GD, Nikolaidis M, Zografos E, Markoulatos P, et al. Genetic variability of the HPV16 early genes and LCR. Present and future perspectives. Expert Rev Mol Med. 2021;23:e19. https://doi.org/10.1017/erm.2021.18 . (PMID: 10.1017/erm.2021.1834847982)
      Ault KA. Human papillomavirus vaccines and the potential for cross-protection between related HPV types. Gynecol Oncol. 2007;107(2 Suppl 1). https://doi.org/10.1016/j.ygyno.2007.08.059 . S31-3.
      Wang LN, Wang L, Cheng G, Dai M, Yu Y, Teng G, et al. The association of telomere maintenance and TERT expression with susceptibility to human papillomavirus infection in cervical epithelium. Cell Mol Life Sci. 2022;79(2):110. https://doi.org/10.1007/s00018-021-04113-0 . (PMID: 10.1007/s00018-021-04113-035098380)
      Crosbie EJ, Einstein MH, Franceschi S, Kitchener HC. Human papillomavirus and cervical cancer. Lancet. 2013;382(9895):889–99. https://doi.org/10.1016/S0140-6736(13)60022-7 . (PMID: 10.1016/S0140-6736(13)60022-723618600)
      Takeuchi F, Kukimoto I, Li Z, Li S, Li N, Hu Z, et al. Genome-wide association study of cervical cancer suggests a role for ARRDC3 gene in human papillomavirus infection. Hum Mol Genet. 2019;28(2):341–8. https://doi.org/10.1093/hmg/ddy390 . (PMID: 10.1093/hmg/ddy39030412241)
      Chen D, Cui T, Ek WE, Liu H, Wang H, Gyllensten U. Analysis of the genetic architecture of susceptibility to cervical cancer indicates that common SNPs explain a large proportion of the heritability. Carcinogenesis. 2015;36(9):992–8. https://doi.org/10.1093/carcin/bgv083 . (PMID: 10.1093/carcin/bgv08326045304)
      Pett M, Coleman N. Integration of high-risk human papillomavirus: a key event in cervical carcinogenesis. J Pathol. 2007;212(4):356–67. https://doi.org/10.1002/path.2192 . (PMID: 10.1002/path.219217573670)
      Morio T, Hanissian S, Geha RS. Characterization of a 23-kDa protein associated with CD40[J]. Proc Natl Acad Sci U S A. 1995;92(25):11633–6. https://doi.org/10.1073/pnas.92.25.11633 . (PMID: 10.1073/pnas.92.25.11633852481840456)
      Quezada SA, Jarvinen LZ, Lind EF, et al. CD40/CD154 interactions at the interface of tolerance and immunity[J]. Annu Rev Immunol. 2004;22:307–28. https://doi.org/10.1146/annurev.immunol.22.012703.104533 . (PMID: 10.1146/annurev.immunol.22.012703.10453315032580)
      AbdelGhafar MT, El-Kholy RA, Elbedewy TA, et al. Impact of CD40 gene polymorphisms on the risk of immune thrombocytopenic purpura[J]. Gene. 2020;736:144419. https://doi.org/10.1016/j.gene.2020.144419 . (PMID: 10.1016/j.gene.2020.14441932018016)
      Zhang Y, Wang N, Ding M, et al. CD40 accelerates the Antigen-Specific Stem-Like Memory CD8(+) T cells formation and human papilloma virus (HPV)-Positive tumor Eradication[J]. Front Immunol. 2020;11:1012. https://doi.org/10.3389/fimmu.2020.01012 . (PMID: 10.3389/fimmu.2020.01012325369227267052)
      Vonderheide RH. Prospect of targeting the CD40 pathway for cancer therapy. Clin Cancer Res. 2007;13:1083–8. https://doi.org/10.1158/1078-0432.CCR-06-1893 . (PMID: 10.1158/1078-0432.CCR-06-189317317815)
      Huang Q, Qu QX, Xie F, et al. CD40 is overexpressed by HPV16/18-E6 positive cervical carcinoma and correlated with clinical parameters and vascular density[J]. Cancer Epidemiol. 2011;35(4):388–92. https://doi.org/10.1016/j.canep.2010.12.004 . (PMID: 10.1016/j.canep.2010.12.00421251894)
      Seran CH, Sarah JY, Stephen M, Glyn RT, Amanda JB, Andrew H, et al. Activation of CD40 in cervical carcinoma cells facilitates CTL responses and augments chemotherapy-induced apoptosis. J Immunol (Baltimore Md : 1950). 2005;174(1):41–50. https://doi.org/10.4049/jimmunol.174.1.41 . (PMID: 10.4049/jimmunol.174.1.41)
      Huang Q, Qu QX, Xie F, Hu JM, Chen YG, Zhang XG. Sensitization of SiHa cell to gemcitabine by CD40 activation and its overexpression in cervical carcinoma. Med Oncol. 2011;28:781–8. (PMID: 10.1007/s12032-010-9538-820467921)
      Altenburg A, Abdel-Naser MB, Nikolakis G, et al. CD40/CD40 ligand interactions and TNFα treatment reduce activity of P105 promoter of the human papilloma virus-18 in vitro[J]. Exp Oncol. 2016;38(1):22–5. (PMID: 10.31768/2312-8852.2016.38(1):22-2527031714)
      Nieters A, Bracci PM, de Sanjosé S, et al. A functional TNFRSF5 polymorphism and risk of non-hodgkin lymphoma, a pooled analysis[J]. Int J Cancer. 2011;128(6):1481–5. https://doi.org/10.1002/ijc.25420 . (PMID: 10.1002/ijc.2542020473910)
      Shuang C, Dalin L, Weiguang Y, Zhenkun F, Fengyan X, Da P, et al. Association of CD40 gene polymorphisms with sporadic breast cancer in chinese Han women of Northeast China. PLoS ONE. 2011;6:e23762. https://doi.org/10.1371/journal.pone.0023762 . (PMID: 10.1371/journal.pone.0023762219126053166053)
      Zhou G, Wang Y, Fang Z, et al. CD40 -1 C > T polymorphism and the risk of lung cancer in a chinese population[J]. Int J Clin Exp Pathol. 2015;8(11):15163–9. (PMID: 268238614713647)
      Tang W, Xue L, Yan Q, Cai S, Bai Y, Lin L, et al. Association of single nucleotide polymorphisms in the apoptosis-related genes TP63 and CD40 with risk for Lung Cancer in a chinese Han Population. Tohoku J Exp Med. 2016;238:279–86. https://doi.org/10.1620/tjem.238.279 . (PMID: 10.1620/tjem.238.27927063419)
      Krishnappa P, Kong HM, Mohamad IB, Voon K, Somanath SD. CD40 polymorphism in cervical carcinoma in a subset of malaysian population. J Obstet Gynaecol Res. 2017;43:923–8. (PMID: 10.1111/jog.1327728181356)
      Yan ZL, Yang XL, Zhang HP, Yin CM, Zhang S, Li WL, Li HY. Association of polymorphisms in CD40 gene with cervical cancer in chinese Han population in Yunnan province. Chin J Cancer Prev Treat. 2017;24:1331–4.
      Chen K, Zhou YX, Li K, et al. A novel three-round multiplex PCR for SNP genotyping with next generation sequencing[J]. Anal Bioanal Chem. 2016;408(16):4371–7. https://doi.org/10.1007/s00216-016-9536-6 . (PMID: 10.1007/s00216-016-9536-627113460)
      Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27:2987–93. https://doi.org/10.1093/bioinformatics/btr509 . (PMID: 10.1093/bioinformatics/btr509219036273198575)
      Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75. https://doi.org/10.1086/519795 . (PMID: 10.1086/519795177019011950838)
      Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005;15:97–8. https://doi.org/10.1038/sj.cr.7290272 . (PMID: 10.1038/sj.cr.729027215740637)
      Bahrami A, Hasanzadeh M, ShahidSales S, Yousefi Z, Kadkhodayan S, Farazestanian M, et al. Clinical significance and prognosis value of wnt signaling pathway in Cervical Cancer. J Cell Biochem. 2017;118:3028–33. https://doi.org/10.1002/jcb.25992 . (PMID: 10.1002/jcb.2599228300286)
      Bergmann S, Pandolfi PP. Giving blood: a new role for CD40 in tumorigenesis. J Exp Med. 2006;203:2409–12. (PMID: 10.1084/jem.20061754170431472118122)
      Monk BJ, Sill MW, McMeekin DS, Cohn DE, Ramondetta LM, Boardman CH, et al. Phase III trial of four cisplatin-containing doublet combinations in stage IVB, recurrent, or persistent cervical carcinoma: a gynecologic Oncology Group study. J Clin Oncol. 2009;27:4649–55. https://doi.org/10.1200/JCO.2009.21.8909 . (PMID: 10.1200/JCO.2009.21.8909197209092754911)
      Chuai Y, Rizzuto I, Zhang X, Li Y, Dai G, Otter SJ, et al. Vascular endothelial growth factor (VEGF) targeting therapy for persistent, recurrent, or metastatic cervical cancer. Cochrane Database Syst Rev. 2021;3:CD013348. (PMID: 33661538)
      Blay JY, Negrier S, Combaret V, Attali S, Goillot E, Merrouche Y, et al. Serum level of interleukin 6 as a prognosis factor in metastatic renal cell carcinoma. Cancer Res. 1992;52:3317–22. (PMID: 1596890)
      Tan A, Xia N, Gao F, Mo Z, Cao Y. Angiogenesis-inhibitors for metastatic thyroid cancer. Cochrane Database Syst Rev. 2010;2010:CD007958. (PMID: 202383607182137)
      Flaxenburg JA, Melter M, Lapchak PH, Briscoe DM, Pal S. The CD40-induced signaling pathway in endothelial cells resulting in the overexpression of vascular endothelial growth factor involves ras and phosphatidylinositol 3-kinase. J Immunol. 2004;172:7503–9. https://doi.org/10.4049/jimmunol.172.12.7503 . (PMID: 10.4049/jimmunol.172.12.750315187129)
      Zirlik A, Bavendiek U, Libby P, MacFarlane L, Gerdes N, Jagielska J, et al. TRAF-1, -2, -3, -5, and – 6 are induced in atherosclerotic plaques and differentially mediate proinflammatory functions of CD40L in endothelial cells. Arterioscler Thromb Vasc Biol. 2007;27:1101–7. https://doi.org/10.1161/ATVBAHA.107.140566 . (PMID: 10.1161/ATVBAHA.107.14056617332487)
      Zhang B, Wu T, Song C, Chen M, Li H, Guo R. Association of CD40–1 C/T polymorphism with cerebral infarction susceptibility and its effect on sCD40L in chinese population. Int Immunopharmacol. 2013;16:461–5. https://doi.org/10.1016/j.intimp.2013.04.028 . (PMID: 10.1016/j.intimp.2013.04.02823669336)
      Chen P, Sun R, Pu Y, Bai P, Yuan F, Liang Y, et al. Pri-Mir-34b/C and Tp-53 polymorphisms are Associated with the susceptibility of papillary thyroid carcinoma: a case-control study. Med (Baltim). 2015;94:e1536. (PMID: 10.1097/MD.0000000000001536)
      Yi DH, Wang BG, Zhong XP, Liu H, Liu YF. Pri-miR-34b/c rs4938723 TC heterozygote is associated with increased cancer risks: evidence from published data. Tumour Biol. 2014;35:11967–75. (PMID: 10.1007/s13277-014-2493-925201061)
      S E B AA. H S, H P, S H. CD40 ligand-CD40 interaction induces chemokines in cervical carcinoma cells in synergism with IFN-gamma. Journal of immunology (Baltimore, Md.: 1950). 1999;162(7):4140-7.
      Angiolo G, Maria Elena G, Carlo G. Tissue biomarkers as prognostic variables of cervical cancer. Crit Rev Oncol Hematol. 2013;86(2):104–29. https://doi.org/10.1016/j.critrevonc.2012.09.003 . (PMID: 10.1016/j.critrevonc.2012.09.003)
      Lu YF, Mauger DM, Goldstein DB, Urban TJ, Weeks KM, Bradrick SS. IFNL3 mRNA structure is remodeled by a functional non-coding polymorphism associated with hepatitis C virus clearance. Sci Rep. 2015;5:16037. (PMID: 10.1038/srep16037265318964631997)
    • Grant Information:
      82071929 National Natural Science Foundation of China
    • Contributed Indexing:
      Keywords: Association studies; CD40; Cervical squamous cell carcinoma; SNPs
    • الرقم المعرف:
      0 (CD40 Antigens)
    • الموضوع:
      Date Created: 20230910 Date Completed: 20230928 Latest Revision: 20231121
    • الموضوع:
      20231121
    • الرقم المعرف:
      PMC10494347
    • الرقم المعرف:
      10.1186/s12885-023-11367-3
    • الرقم المعرف:
      37691121