menu
Item request has been placed!
×
Item request cannot be made.
×

Potential Key Proteins, Molecular Networks, and Pathways in Perinatal Hypoxia.
Item request has been placed!
×
Item request cannot be made.
×

- المؤلفون: Gross J;Gross J; Herrera-Marschitz M; Herrera-Marschitz M
- المصدر:
Neurotoxicity research [Neurotox Res] 2023 Dec; Vol. 41 (6), pp. 571-588. Date of Electronic Publication: 2023 Aug 31.- نوع النشر :
Journal Article- اللغة:
English - المصدر:
- معلومة اضافية
- المصدر: Publisher: Springer Country of Publication: United States NLM ID: 100929017 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-3524 (Electronic) Linking ISSN: 10298428 NLM ISO Abbreviation: Neurotox Res Subsets: MEDLINE
- بيانات النشر: Publication: <2009-> : New York : Springer
Original Publication: [Amsterdam?] : Harwood Academic Publishers, - الموضوع:
- نبذة مختصرة : Perinatal hypoxia is a common risk factor for CNS development. Using bioinformatics databases, a list of 129 genes involved in perinatal hypoxia was selected from the literature and analyzed with respect to proteins important for biological processes influencing the brain development. Functional enrichment analysis using the DAVID database was performed to identify relevant Gene Ontology (GO) biological processes like response to hypoxia, inflammatory response, positive and negative regulation of apoptosis, and positive and negative regulation of cell proliferation. The selected GO processes contain 17-30 proteins and show an enrichment of 6.3-14.3-fold. The STRING protein-protein interaction network and the Cytoscape data analyzer were used to identify interacting proteins playing a significant role in these processes. The two top protein pairs referring to the proteins with highest degrees and the corresponding proteins connected by high score edges exert opposite or regulatory functions and are essential for the balance between damaging, repairing, protective, or epigenetic processes. The GO response to hypoxia is characterized by the high score protein-protein interaction pairs CASP3/FAS promoting apoptosis and by the protective acting BDNF/MECP2 protein pair. Core components of the GO processes positive and negative regulation of apoptosis are the proteins CASP3/FAS/AKT/eNOS/RPS6KB1 involved in several signal pathways. The GO processes cell proliferation are characterized by the high-score protein-protein interaction pairs MYC/ MAPK1, JUN/MAPK1, IL6/IL1B, and JUN/HDAC1. The study provides new insights into the pathophysiology of perinatal hypoxia and is of importance for future investigations, diagnostics, and therapy of perinatal hypoxia.
(© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.) - References: Almli CR, Levy TJ, Han BH et al (2000) BDNF protects against spatial memory deficits following neonatal hypoxia-ischemia. Exp Neurol 166:99–114. https://doi.org/10.1006/exnr.2000.7492. (PMID: 10.1006/exnr.2000.749211031087)
Andresen JH, Løberg EM, Wright M et al (2009) Nicotine affects the expression of brain-derived neurotrophic factor mRNA and protein in the hippocampus of hypoxic newborn piglets. J Perinat Med 37:553–560. https://doi.org/10.1515/JPM.2009.081. (PMID: 10.1515/JPM.2009.08119492919)
Bajnok A, Berta L, Orbán C et al (2017) Distinct cytokine patterns may regulate the severity of neonatal asphyxia-an observational study. J Neuroinflammation 14(244):1–14. https://doi.org/10.1186/s12974-017-1023-2. (PMID: 10.1186/s12974-017-1023-2)
Barialai L, Strecker MI, Luger AL et al (2020) AMPK activation protects astrocytes from hypoxia-induced cell death. Int J Mol Med 45:1385–1396. https://doi.org/10.3892/ijmm.2020.4528. (PMID: 10.3892/ijmm.2020.4528323237557138264)
Biever A, Valjent E, Puighermanal E (2015) Ribosomal protein S6 phosphorylation in the nervous system: from regulation to function. Front Mol Neurosci 8(75):1–14. https://doi.org/10.3389/fnmol.2015.00075. (PMID: 10.3389/fnmol.2015.00075)
Buscà R, Pouysségur J, Lenormand P (2016) ERK1 and ERK2 map kinases: specific roles or functional redundancy? Front Cell Dev Biol 4:53. https://doi.org/10.3389/fcell.2016.00053. (PMID: 10.3389/fcell.2016.00053273760624897767)
Bustelo M, Barkhuizen M, van den Hove DLA et al (2020) Clinical implications of epigenetic dysregulation in perinatal hypoxic-ischemic brain damage. Front Neurol 11(483):1–15. https://doi.org/10.3389/fneur.2020.00483. (PMID: 10.3389/fneur.2020.00483)
Castellano R, Vire B, Pion M et al (2006) Active transcription of the human FASL/CD95L/TNFSF6 promoter region in T lymphocytes involves chromatin remodeling: role of DNA methylation and protein acetylation suggest distinct mechanisms of transcriptional repression. J Biol Chem 281:14719–14728. https://doi.org/10.1074/jbc.M602373200. (PMID: 10.1074/jbc.M60237320016595663)
Chen C, Wei M, Wang C et al (2020) The histone deacetylase HDAC1 activates HIF-1α/VEGFA signal pathway in colorectal cancer. Gene 754:144851. https://doi.org/10.1016/j.gene.2020.144851.
Chen W, Ostrowski RP, Obenaus A, Zhang JH (2009) Prodeath or prosurvival: two facets of hypoxia inducible factor-1 in perinatal brain injury. Exp Neurol 216:7–15. https://doi.org/10.1016/j.expneurol.2008.10.016. (PMID: 10.1016/j.expneurol.2008.10.01619041643)
Cheng Y, Gidday JM, Yan Q et al (1997) Marked age-dependent neuroprotection by brain-derived neurotrophic factor against neonatal hypoxic-ischemic brain injury. Ann Neurol 41:521–529. https://doi.org/10.1002/ana.410410416. (PMID: 10.1002/ana.4104104169124810)
Corrado C, Fontana S (2020) Hypoxia and HIF signaling: one axis with divergent effects. Int J Mol Sci 21(E5611):1–17. https://doi.org/10.3390/ijms21165611. (PMID: 10.3390/ijms21165611)
Cox-Limpens KEM, Vles JSH, Schlechter J et al (2013) Fetal brain genomic reprogramming following asphyctic preconditioning. BMC Neurosci 14:61. https://doi.org/10.1186/1471-2202-14-61. (PMID: 10.1186/1471-2202-14-61238003303724485)
Datta M, Staszewski O, Raschi E et al (2018) Histone deacetylases 1 and 2 regulate microglia function during development, homeostasis, and neurodegeneration in a context-dependent manner. Immunity 48:514-529.e6. https://doi.org/10.1016/j.immuni.2018.02.016. (PMID: 10.1016/j.immuni.2018.02.01629548672)
Deng C, Li J, Li L et al (2019) Effects of hypoxia ischemia on caspase-3 expression and neuronal apoptosis in the brain of neonatal mice. Exp Ther Med 17:4517–4521. https://doi.org/10.3892/etm.2019.7487. (PMID: 10.3892/etm.2019.7487310865836488988)
Diaz J, Abiola S, Kim N et al (2017) Therapeutic hypothermia provides variable protection against behavioral deficits after neonatal hypoxia-ischemia: a potential role for brain-derived neurotrophic factor. Dev Neurosci 39:257–272. https://doi.org/10.1159/000454949. (PMID: 10.1159/00045494928196356)
Dibble CC, Cantley LC (2015) Regulation of mTORC1 by PI3K signaling. Trends Cell Biol 25:545–555. https://doi.org/10.1016/j.tcb.2015.06.002. (PMID: 10.1016/j.tcb.2015.06.002261596924734635)
Dong Y, Yu Z, Sun Y et al (2011) Chronic fetal hypoxia produces selective brain injury associated with altered nitric oxide synthases. Am J Obstet Gynecol 204:254.e16–28. https://doi.org/10.1016/j.ajog.2010.11.032. (PMID: 10.1016/j.ajog.2010.11.03221272843)
Ducsay CA, Goyal R, Pearce WJ et al (2018) Gestational hypoxia and developmental plasticity. Physiol Rev 98:1241–1334. https://doi.org/10.1152/physrev.00043.2017. (PMID: 10.1152/physrev.00043.2017297179326088145)
Erekat N (2018) Apoptosis and its role in Parkinson’s disease. In: Stoker T, Greenland J (eds) Parkinson’s Disease: Pathogenesis and Clinical Aspects. Codon Publications, Brisbane (AU). http://www.ncbi.nlm.nih.gov/books/NBK536724/.
Fricker M, Tolkovsky AM, Borutaite V et al (2018) Neuronal cell death. Physiol Rev 98:813–880. https://doi.org/10.1152/physrev.00011.2017. (PMID: 10.1152/physrev.00011.2017294888225966715)
Giannopoulou I, Pagida MA, Briana DD, Panayotacopoulou MT (2018) Perinatal hypoxia as a risk factor for psychopathology later in life: the role of dopamine and neurotrophins. Hormones 17:25–32. https://doi.org/10.1007/s42000-018-0007-7. (PMID: 10.1007/s42000-018-0007-729858855)
Ginet V, Puyal J, Magnin G et al (2009a) Limited role of the c-Jun N-terminal kinase pathway in a neonatal rat model of cerebral hypoxia-ischemia. J Neurochem 108:552–562. https://doi.org/10.1111/j.1471-4159.2008.05797.x. (PMID: 10.1111/j.1471-4159.2008.05797.x19046406)
Ginet V, Puyal J, Clarke PGH et al (2009b) Enhancement of autophagic flux after neonatal cerebral hypoxia-ischemia and its region-specific relationship to apoptotic mechanisms. Am J Pathol 175:1962–1974. https://doi.org/10.2353/ajpath.2009.090463. (PMID: 10.2353/ajpath.2009.090463198157062774060)
Gonzales ML, LaSalle JM (2010) The role of MeCP2 in brain development and neurodevelopmental disorders. Curr Psychiatry Rep 12:127–134. https://doi.org/10.1007/s11920-010-0097-7. (PMID: 10.1007/s11920-010-0097-7204252982847695)
Good KV, Vincent JB, Ausió J (2021) MeCP2: the genetic driver of rett syndrome epigenetics. Front Genet 12(620859):1–21. https://doi.org/10.3389/fgene.2021.620859. (PMID: 10.3389/fgene.2021.620859)
Greene CS, Krishnan A, Wong AK et al (2015) Understanding multicellular function and disease with human tissue-specific networks. Nat Genet 47:569–576. https://doi.org/10.1038/ng.3259. (PMID: 10.1038/ng.3259259156004828725)
Guy J, Cheval H, Selfridge J, Bird A (2011) The role of MeCP2 in the brain. Annu Rev Cell Dev Biol 27:631–652. https://doi.org/10.1146/annurev-cellbio-092910-154121. (PMID: 10.1146/annurev-cellbio-092910-15412121721946)
Han BH, D’Costa A, Back SA et al (2000) BDNF blocks caspase-3 activation in neonatal hypoxia-ischemia. Neurobiol Dis 7:38–53. https://doi.org/10.1006/nbdi.1999.0275. (PMID: 10.1006/nbdi.1999.027510671321)
Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945. https://doi.org/10.1101/gad.1212704. (PMID: 10.1101/gad.121270415314020)
He M, Xia S, Miao Y et al (2019) Mesenchymal stem cells-derived IL6 activates AMPK/mTOR signaling to inhibit the proliferation of reactive astrocytes induced by hypoxic-ischemic brain damage. Exp Neurol 311:15–32. https://doi.org/10.1016/j.expneurol.2018.09.006. (PMID: 10.1016/j.expneurol.2018.09.00630213506)
Herrera-Marschitz M, Morales P, Leyton L et al (2011) Perinatal asphyxia: current status and approaches towards neuroprotective strategies, with focus on sentinel proteins. Neurotox Res 19:603–627. https://doi.org/10.1007/s12640-010-9208-9. (PMID: 10.1007/s12640-010-9208-920645042)
Hollville E, Romero SE, Deshmukh M (2019) Apoptotic cell death regulation in neurons. FEBS J 286:3276–3298. https://doi.org/10.1111/febs.14970. (PMID: 10.1111/febs.14970312304076718311)
Huang JK, Carlin DE, Yu MK et al (2018) Systematic evaluation of molecular networks for discovery of disease genes. Cell Syst 6:484-495.e5. https://doi.org/10.1016/j.cels.2018.03.001. (PMID: 10.1016/j.cels.2018.03.001296051835920724)
Im HI, Hollander JA, Bali P, Kenny PJ (2010) MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nat Neurosci 13:1120–1127. https://doi.org/10.1038/nn.2615. (PMID: 10.1038/nn.2615207111852928848)
Julien O, Wells JA (2017) Caspases and their substrates. Cell Death Differ 24:1380–1389. https://doi.org/10.1038/cdd.2017.44. (PMID: 10.1038/cdd.2017.44284983625520456)
Kim AH, Yano H, Cho H et al (2002) Akt1 regulates a JNK scaffold during excitotoxic apoptosis. Neuron 35:697–709. https://doi.org/10.1016/s0896-6273(02)00821-8. (PMID: 10.1016/s0896-6273(02)00821-812194869)
Kletkiewicz H, Rogalska J (2019) Decreased body temperature during anoxia affects the endogenous BDNF level in tertiary phase of injury. Neurosci Lett 711:134413. https://doi.org/10.1016/j.neulet.2019.134413.
Kovács V, Tóth-Szűki V, Németh J et al (2018) Active forms of Akt and ERK are dominant in the cerebral cortex of newborn pigs that are unaffected by asphyxia. Life Sci 192:1–8. https://doi.org/10.1016/j.lfs.2017.11.015. (PMID: 10.1016/j.lfs.2017.11.01529138115)
Kumar R, Jain V, Kushwah N et al (2018) Role of DNA methylation in hypobaric hypoxia-induced neurodegeneration and spatial memory impairment. Ann Neurosci 25:191–200. https://doi.org/10.1159/000490368. (PMID: 10.1159/000490368310009576470337)
Lagger G, O’Carroll D, Rembold M et al (2002) Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J 21:2672–2681. https://doi.org/10.1093/emboj/21.11.2672. (PMID: 10.1093/emboj/21.11.267212032080126040)
Leifsdottir K, Mehmet H, Eksborg S, Herlenius E (2018) Fas-ligand and interleukin-6 in the cerebrospinal fluid are early predictors of hypoxic-ischemic encephalopathy and long-term outcomes after birth asphyxia in term infants. J Neuroinflammation 15(223):1–11. https://doi.org/10.1186/s12974-018-1253-y. (PMID: 10.1186/s12974-018-1253-y)
Lespay-Rebolledo C, Tapia-Bustos A, Perez-Lobos R et al (2021) Sustained energy deficit following perinatal asphyxia: a shift towards the fructose-2,6-bisphosphatase (TIGAR)-dependent pentose phosphate pathway and postnatal development. Antioxidants 11:74. https://doi.org/10.3390/antiox11010074.
Li J, Kim SG, Blenis J (2014) Rapamycin: one drug, many effects. Cell Metab 19:373–379. https://doi.org/10.1016/j.cmet.2014.01.001. (PMID: 10.1016/j.cmet.2014.01.001245085083972801)
Lu N, Malemud CJ (2019) Extracellular signal-regulated kinase: a regulator of cell growth, inflammation, chondrocyte and bone cell receptor-mediated gene expression. Int J Mol Sci 20(3792):1–18. https://doi.org/10.3390/ijms20153792. (PMID: 10.3390/ijms20153792)
Lubec B, Labudova O, Hoeger H et al (2002) Expression of transcription factors in the brain of rats with perinatal asphyxia. Biol Neonate 81:266–278. https://doi.org/10.1159/000056758. (PMID: 10.1159/00005675812011571)
Ma Q, Zhang L (2015) Epigenetic programming of hypoxic-ischemic encephalopathy in response to fetal hypoxia. Prog Neurobiol 124:28–48. https://doi.org/10.1016/j.pneurobio.2014.11.001. (PMID: 10.1016/j.pneurobio.2014.11.00125450949)
Meng Q, Xia Y (2011) c-Jun, at the crossroad of the signaling network. Protein Cell 2:889–898. https://doi.org/10.1007/s13238-011-1113-3. (PMID: 10.1007/s13238-011-1113-3221800884875184)
Michel K, Zhao T, Karl M et al (2015) Translational control of myelin basic protein expression by ERK2 MAP kinase regulates timely remyelination in the adult brain. J Neurosci off J Soc Neurosci 35:7850–7865. https://doi.org/10.1523/JNEUROSCI.4380-14.2015. (PMID: 10.1523/JNEUROSCI.4380-14.2015)
Moldogazieva NT, Mokhosoev IM, Terentiev AA (2020) Metabolic heterogeneity of cancer cells: an interplay between HIF-1, GLUTs, and AMPK. Cancers 12(862):1–31. https://doi.org/10.3390/cancers12040862. (PMID: 10.3390/cancers12040862)
Morales P, Fiedler JL, Andrés S et al (2008) Plasticity of hippocampus following perinatal asphyxia: effects on postnatal apoptosis and neurogenesis. J Neurosci Res 86:2650–2662. https://doi.org/10.1002/jnr.21715. (PMID: 10.1002/jnr.2171518512760)
Morrison DK (2012) MAP kinase pathways. Cold Spring Harb Perspect Biol 4(a011254):1–5. https://doi.org/10.1101/cshperspect.a011254. (PMID: 10.1101/cshperspect.a011254)
Nasyrov E, Nolan KA, Wenger RH et al (2019) The neuronal oxygen-sensing pathway controls postnatal vascularization of the murine brain. FASEB J off Publ Fed Am Soc Exp Biol 33:12812–12824. https://doi.org/10.1096/fj.201901385RR. (PMID: 10.1096/fj.201901385RR)
Neira-Peña T, Rojas-Mancilla E, Munoz-Vio V et al (2015) Perinatal asphyxia leads to PARP-1 overactivity, p65 translocation, IL-1β and TNF-α overexpression, and apoptotic-like cell death in mesencephalon of neonatal rats: prevention by systemic neonatal nicotinamide administration. Neurotox Res 27:453–465. https://doi.org/10.1007/s12640-015-9517-0. (PMID: 10.1007/s12640-015-9517-0258352154383817)
O’Connor JJ (2013) Targeting tumour necrosis factor-α in hypoxia and synaptic signalling. Ir J Med Sci 182:157–162. https://doi.org/10.1007/s11845-013-0911-4. (PMID: 10.1007/s11845-013-0911-423361632)
Ortega JA, Sirois CL, Memi F et al (2017) Oxygen levels regulate the development of human cortical radial glia cells. Cereb Cortex 27:3736–3751. https://doi.org/10.1093/cercor/bhw194. (PMID: 10.1093/cercor/bhw19427600849)
Papavassiliou AG, Musti AM (2020) The multifaceted output of c-Jun biological activity: focus at the junction of CD8 T cell activation and exhaustion. Cells 9(E2470):1–26. https://doi.org/10.3390/cells9112470. (PMID: 10.3390/cells9112470)
Piešová M and Mach M (2020) Impact of perinatal hypoxia on the developing brain. Physiol Res 69:199–213. https://doi.org/10.33549/physiolres.934198.
Planells-Ferrer L, Urresti J, Coccia E et al (2016) Fas apoptosis inhibitory molecules: more than death-receptor antagonists in the nervous system. J Neurochem 139:11–21. https://doi.org/10.1111/jnc.13729. (PMID: 10.1111/jnc.1372927385439)
Rose-John S (2020) Interleukin-6 signalling in health and disease. F1000Research 9 (1013):1–11. https://doi.org/10.12688/f1000research.26058.1.
Rossiter JP, Anderson LL, Yang F, Cole GM (2002) Caspase-3 activation and caspase-like proteolytic activity in human perinatal hypoxic-ischemic brain injury. Acta Neuropathol 103:66–73. https://doi.org/10.1007/s004010100432. (PMID: 10.1007/s00401010043211841033)
Rubinstein AD, Kimchi A (2012) Life in the balance - a mechanistic view of the crosstalk between autophagy and apoptosis. J Cell Sci 125:5259–5268. https://doi.org/10.1242/jcs.115865. (PMID: 10.1242/jcs.11586523377657)
Saliba E, Henrot A (2001) Inflammatory mediators and neonatal brain damage. Biol Neonate 79:224–227. https://doi.org/10.1159/000047096. (PMID: 10.1159/00004709611275656)
Sánchez-Lafuente CL, Kalynchuk LE, Caruncho HJ, Ausió J (2022) The role of MeCP2 in regulating synaptic plasticity in the context of stress and depression. Cells 11:748–765. https://doi.org/10.3390/cells11040748. (PMID: 10.3390/cells11040748352034058870391)
Schaper F, Rose-John S (2015) Interleukin-6: biology, signaling and strategies of blockade. Cytokine Growth Factor Rev 26:475–487. https://doi.org/10.1016/j.cytogfr.2015.07.004. (PMID: 10.1016/j.cytogfr.2015.07.00426189695)
Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. https://doi.org/10.1101/gr.1239303. (PMID: 10.1101/gr.123930314597658403769)
Sherman BT, Huang DW, Tan Q et al (2007) DAVID knowledgebase: a gene-centered database integrating heterogeneous gene annotation resources to facilitate high-throughput gene functional analysis. BMC Bioinformatics 8:426. https://doi.org/10.1186/1471-2105-8-426. (PMID: 10.1186/1471-2105-8-426179800282186358)
Šumanović-Glamuzina D, Filip Č, Melanie I (2017) A comparison of blood and cerebrospinal fluid cytokines (IL-1β, IL6, IL-18, TNF-α) in neonates with perinatal hypoxia. Bosn J Basic Med Sci 17: 203–10. https://doi.org/10.17305/bjbms.2017.1381.
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M (2019) STRING V11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613. https://doi.org/10.1093/nar/gky1131. (PMID: 10.1093/nar/gky113130476243)
Szyf M (2019) The epigenetics of perinatal stress. Dialogues Clin Neurosci 21:369–378. https://doi.org/10.31887/DCNS.2019.21.4/mszyf.
Takei N, Nawa H (2014) mTOR signaling and its roles in normal and abnormal brain development. Front Mol Neurosci 7:28–56. https://doi.org/10.3389/fnmol.2014.00028. (PMID: 10.3389/fnmol.2014.00028247955624005960)
Thornton C, Hagberg H (2015) Role of mitochondria in apoptotic and necroptotic cell death in the developing brain. Clin Chim Acta Int J Clin Chem 451:35–38. https://doi.org/10.1016/j.cca.2015.01.026. (PMID: 10.1016/j.cca.2015.01.026)
Vermehren-Schmaedick A, Jenkins VK, Knopp SJ et al (2012) Acute intermittent hypoxia-induced expression of brain-derived neurotrophic factor is disrupted in the brainstem of methyl-CpG-binding protein 2 null mice. Neuroscience 206:1–6. https://doi.org/10.1016/j.neuroscience.2012.01.017. (PMID: 10.1016/j.neuroscience.2012.01.01722297041)
Volpe JJ, Kinney HC, Jensen FE, Rosenberg PA (2011) The developing oligodendrocyte: key cellular target in brain injury in the premature infant. Int J Dev Neurosci off J Int Soc Dev Neurosci 29:423–440. https://doi.org/10.1016/j.ijdevneu.2011.02.012. (PMID: 10.1016/j.ijdevneu.2011.02.012)
Wang C, Kavalali ET, Monteggia L (2022) BDNF signaling in context: from synaptic regulation to psychiatric disorders. Cell 185:62–76. https://doi.org/10.1016/j.cell.2021.12.003. (PMID: 10.1016/j.cell.2021.12.00334963057)
Wang W, Wang S, Liu T et al (2020) Resveratrol: multi-targets mechanism on neurodegenerative diseases based on network pharmacology. Front Pharmacol 11(694):1–12. https://doi.org/10.3389/fphar.2020.00694. (PMID: 10.3389/fphar.2020.00694)
Wierońska JM, Cieślik P, Kalinowski L (2021) Nitric oxide-dependent pathways as critical factors in the consequences and recovery after brain ischemic hypoxia. Biomolecules 11(1097):1–29. https://doi.org/10.3390/biom11081097. (PMID: 10.3390/biom11081097)
Willis EF, MacDonald KPA, Nguyen QH et al (2020) Repopulating microglia promote brain repair in an IL6-dependent manner. Cell 180:833-846.e16. https://doi.org/10.1016/j.cell.2020.02.013. (PMID: 10.1016/j.cell.2020.02.01332142677)
Wong AK, Krishnan A, Troyanskaya OG (2018) GIANT 2.0: genome-scale integrated analysis of gene networks in tissues. Nucleic Acids Res 46:W65–W70. https://doi.org/10.1093/nar/gky408. (PMID: 10.1093/nar/gky408298002266030827)
Wu H, Che X, Zheng Q et al (2014) Caspases: a molecular switch node in the crosstalk between autophagy and apoptosis. Int J Biol Sci 10:1072–1083. https://doi.org/10.7150/ijbs.9719. (PMID: 10.7150/ijbs.9719252850394183927)
Xanthou M, Fotopoulos S, Mouchtouri A et al (2002) Inflammatory mediators in perinatal asphyxia and infection. Acta Paediatr 1992(Suppl 91):92–97. https://doi.org/10.1111/j.1651-2227.2002.tb02911.x. (PMID: 10.1111/j.1651-2227.2002.tb02911.x)
Xie C, Ginet V, Sun Y et al (2016) Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury. Autophagy 12:410–423. https://doi.org/10.1080/15548627.2015.1132134. (PMID: 10.1080/15548627.2015.1132134267273964835980)
Xie R, Wang P, Cheng M et al (2014) Mammalian target of rapamycin cell signaling pathway contributes to the protective effects of ischemic postconditioning against stroke. Stroke 45:2769–2776. https://doi.org/10.1161/STROKEAHA.114.005406. (PMID: 10.1161/STROKEAHA.114.005406250130174146669)
Yadav R, Srivastava P (2018) Clustering, pathway enrichment, and protein-protein interaction analysis of gene expression in neurodevelopmental disorders. Adv Pharmacol Sci 2018:3632159. https://doi.org/10.1155/2018/3632159. (PMID: 10.1155/2018/3632159305986636288580)
Yoon J, Blumer A, Lee K (2006) An algorithm for modularity analysis of directed and weighted biological networks based on edge-betweenness centrality. Bioinforma Oxf Engl 22:3106–3108. https://doi.org/10.1093/bioinformatics/btl533. (PMID: 10.1093/bioinformatics/btl533)
Yu JSL, Cui W (2016) Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development 143:3050–3060. https://doi.org/10.1242/dev.137075. (PMID: 10.1242/dev.13707527578176)
Yue J, López JM (2020) Understanding MAPK signaling pathways in apoptosis. Int J Mol Sci 21(E2346):1–22. https://doi.org/10.3390/ijms21072346. (PMID: 10.3390/ijms21072346)
Zaytseva O, Kim NH, Quinn LM (2020) MYC in brain development and cancer. Int J Mol Sci 21(7742):1–14. https://doi.org/10.3390/ijms21207742. (PMID: 10.3390/ijms21207742)
Zhang Z, Yao L, Yang J et al (2018) PI3K/Akt and HIF-1 signaling pathway in hypoxia-ischemia (Review). Mol Med Rep 18:3547–3554. https://doi.org/10.3892/mmr.2018.9375. (PMID: 10.3892/mmr.2018.9375301061456131612) - Contributed Indexing: Keywords: Brain; Molecular networks; Pathway; Perinatal hypoxia
- الرقم المعرف: EC 3.4.22.- (Caspase 3)
- الموضوع: Date Created: 20230831 Date Completed: 20231129 Latest Revision: 20231129
- الموضوع: 20250114
- الرقم المعرف: 10.1007/s12640-023-00663-2
- الرقم المعرف: 37651081
- المصدر:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login

حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.