References: Agoun H, Semiane N, Mallek A et al (2021) High-carbohydrate diet-induced metabolic disorders in Gerbillus tarabuli (a new model of non-alcoholic fatty-liver disease). Protective effects of 20-hydroxyecdysone. Arch Physiol Biochem 127:127–135. (PMID: 3119056610.1080/13813455.2019.1621350)
Al-Mansoori L, Al-Jaber H, Prince MS, Elrayess MA (2021) Role of inflammatory cytokines, growth factors and adipokines in adipogenesis and insulin resistance. Inflammation 7:81–14.
Anagnostis P, Athyros VG, Tziomalos K et al (2009) The pathogenetic role of cortisol in the metabolic syndrome: a hypothesis. J Clin Endocrinol Metab 94:2692–2701. (PMID: 1947062710.1210/jc.2009-0370)
Andrews RC, Walker BR (1999) Glucocorticoids and insulin resistance: old hormones, new targets. Clin Sci 96:513–523. (PMID: 10.1042/cs0960513)
Bahmani M, Eftekhari Z, Saki K et al (2016) Obesity phytotherapy: review of native herbs used in traditional medicine for obesity. J Evid-Based Compl Altern Med 21:228–234.
Bellahreche Z, Semiane N, Mallek A, Dahmani Y (2022) High-fat/high-carbohydrate-diet short-and middle-term effects on gerbil adrenal zona fasciculata histology. Tissue Cell 75:101729. (PMID: 3506535010.1016/j.tice.2022.101729)
Buchenauer T, Behrendt P, Bode FJ et al (2009) Diet-induced obesity alters behavior as well as serum levels of corticosterone in F344 rats. PhYsiol Behav 98:563–569. (PMID: 1975175110.1016/j.physbeh.2009.09.003)
Cheng DM, Kutzler LW, Boler DD et al (2013) Continuous infusion of 20-hydroxyecdysone increased mass of triceps brachii in C57BL/6 Mice. Phytother Res 27:107–111. (PMID: 2249596910.1002/ptr.4679)
Das N, Mishra SK, Bishayee A et al (2021) The phytochemical, biological, and medicinal attributes of phytoecdysteroids: An updated review. Acta Pharm Sin B 11:1740–1766. (PMID: 3438631910.1016/j.apsb.2020.10.012)
Dinan L, Dioh W, Veillet S, Lafont R (2021) 20-Hydroxyecdysone, from plant extracts to clinical use: Therapeutic potential for the treatment of neuromuscular, cardio-metabolic and respiratory diseases. Biomedicines 9:492. (PMID: 33947076814678910.3390/biomedicines9050492)
Dinčić M, Todorović J, Ostojić JN et al (2020) The fractal and GLCM textural parameters of chromatin may be potential biomarkers of papillary thyroid carcinoma in Hashimoto’s thyroiditis specimens. Microsc Microanal 26:717–730. (PMID: 3258879310.1017/S1431927620001683)
Dunn AJ (2000) Cytokine activation of the HPA axis. Ann NY Acad Sci 917:608–617. (PMID: 1126838910.1111/j.1749-6632.2000.tb05426.x)
Dushkin M, Khrapova M, Kovshik G et al (2014) Effects of rhaponticum carthamoides versus glycyrrhiza glabra and punica granatum extracts on metabolic syndrome signs in rats. BMC Complement Altern Med 14:1–9. (PMID: 10.1186/1472-6882-14-33)
Fernandez-Montero A, García-Ros D, Sánchez-Tainta A et al (2019) Burnout syndrome and increased insulin resistance. J Occup Environ Med 61:729–734. (PMID: 3127467510.1097/JOM.0000000000001645)
Fischer EG (2020) Nuclear morphology and the biology of cancer cells. Acta Cytol 64:511–519. (PMID: 3257023410.1159/000508780)
Foucault A-S, Mathé V, Lafont R et al (2012) Quinoa extract enriched in 20-hydroxyecdysone protects mice from diet-induced obesity and modulates adipokines expression. Obesity 20:270–277. (PMID: 2186975810.1038/oby.2011.257)
Foucault A-S, Even P, Lafont R et al (2014) Quinoa extract enriched in 20-hydroxyecdysone affects energy homeostasis and intestinal fat absorption in mice fed a high-fat diet. Physiol Behav 128:226–231. (PMID: 2453416710.1016/j.physbeh.2014.02.002)
Goh G, Scholl UI, Healy JM et al (2014) Recurrent activating mutation in PRKACA in cortisol-producing adrenal tumors. Nat Genet 46:613–617. (PMID: 24747643407477910.1038/ng.2956)
Gorelick-Feldman J, MacLean D, Ilic N et al (2008) Phytoecdysteroids increase protein synthesis in skeletal muscle cells. J Agric Food Chem 56:3532–3537. (PMID: 1844466110.1021/jf073059z)
Hammadi S, Chan O, Abdellali M et al (2018) Hyperactivation of the hypothalamo-pituitary-adrenocortical axis in streptozotocin-diabetic gerbils (Gerbillus gerbillus). Int J Exp Pathol 99:172–179. (PMID: 30256482615729910.1111/iep.12284)
Haralick RM, Shanmugam K, Dinstein IH (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 1:610–621. (PMID: 10.1109/TSMC.1973.4309314)
Lafont R, Balducci C, Dinan L (2021) Ecdysteroids. Encyclopedia 1:1267–1302. (PMID: 10.3390/encyclopedia1040096)
Lafont R, Serova M, Didry-Barca B et al (2022) 20-Hydroxyecdysone activates the protective arm of the RAAS via the MAS receptor. J Mol Endocrinol 68:77–87. (PMID: 10.1530/JME-21-0033)
Lefebvre H, Prevost G, Louiset E (2013) Autocrine/paracrine regulatory mechanisms in adrenocortical neoplasms responsible for primary adrenal hypercorticism. Eur J Endocrinol 169:R115–R138. (PMID: 2395629810.1530/EJE-13-0308)
Leung A, Trac C, Du J et al (2016) Persistent Chromatin Modifications Induced by High Fat Diet*♦. J Biol Chem 291:10446–10455. (PMID: 27006400486589610.1074/jbc.M115.711028)
Losa GA, Castelli C (2005) Nuclear patterns of human breast cancer cells during apoptosis: characterisation by fractal dimension and co-occurrence matrix statistics. Cell Tissue Res 322:257–267. (PMID: 1605970310.1007/s00441-005-0030-2)
Mallek A, Movassat J, Ameddah S et al (2018) Experimental diabetes induced by streptozotocin in the desert gerbil, Gerbillus gerbillus, and the effects of short-term 20-hydroxyecdysone administration. Biomed Pharmacother 102:354–361. (PMID: 2957102010.1016/j.biopha.2018.03.070)
Martinovic T, Ciric D, Pantic I et al (2018) Unusual shape and structure of lymphocyte nuclei is linked to hyperglycemia in type 2 diabetes patients. Tissue Cell 52:92–100. (PMID: 2985783410.1016/j.tice.2018.04.005)
Medjerab M, Abdelali M, Khalkhal A et al (2019) Adrenal cortex disorders in a new model of obesity, Gerbillus gerbillus, exposed to a high carbohydrate diet. C R Biol 342:35–44. (PMID: 3068656610.1016/j.crvi.2019.01.001)
Mete O, Erickson LA, Juhlin CC et al (2022) Overview of the 2022 WHO classification of adrenal cortical tumors. Endocr Pathol 33:155–196. (PMID: 35288842892044310.1007/s12022-022-09710-8)
Moreno-Fernández S, Garcés-Rimón M, Vera G et al (2018) High fat/high glucose diet induces metabolic syndrome in an experimental rat model. Nutrients 10:1502. (PMID: 30322196621302410.3390/nu10101502)
Pantic I, Basailovic M, Paunovic J, Pantic S (2015) Relationship between chromatin complexity and nuclear envelope circularity in hippocampal pyramidal neurons. Chaos Solitons Fractals 76:271–277. (PMID: 10.1016/j.chaos.2015.04.009)
Pantic I, Nesic D, Basailovic M et al (2016a) Chromatin fractal organization, textural patterns, and circularity of nuclear envelope in adrenal zona fasciculata cells. Microsc Microanal 22:1120–1127. (PMID: 2782122110.1017/S1431927616011910)
Pantic I, Nesic Z, Pantic JP et al (2016b) Fractal analysis and gray level co-occurrence matrix method for evaluation of reperfusion injury in kidney medulla. J Theor Biol 397:61–67. (PMID: 2696477410.1016/j.jtbi.2016.02.038)
Pantic I, Pantić JP, Radojević-Škodrić S (2022) Application of fractal and textural analysis in medical physiology, pathophysiology and pathology. Med Istraživanja 55:43. (PMID: 10.5937/medi55-40351)
Poulet S (2004) Les gerbilles: nouveaux rongeurs de compagnie. (Doctoral dissertation, Thèse de Doctorat. Université Paul-Sebastier, Toulouse. Partie, 2, 150).
Pudney J, Price GM, Whitehouse BJ, Vinson GP (1984) Effects of chronic ACTH stimulation on the morphology of the rat adrenal cortex. Anat Rec 210:603–615. (PMID: 609819510.1002/ar.1092100408)
Ramazonov N, Yusupova U, Egamova F, Syrov V (2020) Anti stress activity of phytoecdysteroids isolated from aerial part of Silene claviformis. Chem Sci Inter J 29:9–17. (PMID: 10.9734/CSJI/2020/v29i730190)
Rosol TJ, Yarrington JT, Latendresse J, Capen CC (2001) Adrenal gland: structure, function, and mechanisms of toxicity. Toxicol Pathol 29:41–48. (PMID: 1121568310.1080/019262301301418847)
Rossi GP, Lenzini L, Caroccia B et al (2021) Angiotensin peptides in the regulation of adrenal cortical function. Explor Med. 2:294–304. https://doi.org/10.37349/emed.2021.00047. (PMID: 10.37349/emed.2021.00047)
Semiane N, Foufelle F, Ferré P et al (2017) High carbohydrate diet induces nonalcoholic steato-hepatitis (NASH) in a desert gerbil. C R Biol 340:25–36. (PMID: 2769736610.1016/j.crvi.2016.09.002)
Semiane N, Mallek A, Bellahreche Z, Dahmani Y (2020) Impact d’une diète obésogène sur l’architecture du pancréas de Gerbillus gerbillus. In: Semiane N (ed) Effets curatifs de la 20 hydroxyecdysone. Annales d’Endocrinologie. Elsevier.
Sihali-Beloui O, El-Aoufi S, Maouche B, Marco S (2016) Psammomys obesus, a unique model of metabolic syndrome, inflammation and autophagy in the pathologic development of hepatic steatosis. C R Biol 339:475–486. (PMID: 2761458610.1016/j.crvi.2016.08.001)
Sricharoenvej S, Boonprasop S, Lanlua P et al (2009) Morphological and microvascular changes of the adrenal glands in streptozotocin-induced long-term diabetic rats. Ital J Anat Embryol Arch Ital Anat Ed Embriologia 114:1–10.
Swierczynska MM, Mateska I, Peitzsch M et al (2015) Changes in morphology and function of adrenal cortex in mice fed a high-fat diet. Int J Obes 39:321–330. (PMID: 10.1038/ijo.2014.102)
Topalovic N, Mazic S, Nesic D et al (2021) Association between chromatin structural organization of peripheral blood neutrophils and self-perceived mental stress: Gray-level co-occurrence matrix analysis. Microsc Microanal 27:1202–1208. (PMID: 10.1017/S143192762101240X)
Vesković M, Labudović-Borović M, Zaletel I et al (2018) The effects of betaine on the nuclear fractal dimension, chromatin texture, and proliferative activity in hepatocytes in mouse model of nonalcoholic fatty liver disease. Microsc Microanal 24:132–138. (PMID: 2935061210.1017/S1431927617012806)
Victorio JA, Guizoni DM, Freitas IN et al (2021) Effects of high-fat and high-fat/high-sucrose diet-induced obesity on PVAT modulation of vascular function in male and female mice. Front Pharmacol 12:720224. (PMID: 34566644846089610.3389/fphar.2021.720224)
Wellen KE, Hotamisligil GS (2003) Obesity-induced inflammatory changes in adipose tissue. J Clin Invest 112:1785–1788. (PMID: 1467917229700610.1172/JCI20514)
Werdermann M, Berger I, Scriba LD et al (2021) Insulin and obesity transform hypothalamic-pituitary-adrenal axis stemness and function in a hyperactive state. Mol Metab 43:101112. (PMID: 3315725410.1016/j.molmet.2020.101112)
WHO (2022) Obesity and overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight . Accessed 29 Nov 2022.
Zatra Y, Aknoun-Sail N, Kheddache A et al (2018) Seasonal changes in plasma testosterone and cortisol suggest an androgen mediated regulation of the pituitary adrenal axis in the Tarabul’s gerbil Gerbillus tarabuli (Thomas, 1902). Gen Comp Endocrinol 258:173–183. (PMID: 2881119710.1016/j.ygcen.2017.08.012)
No Comments.