Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Analyses of oxidative DNA damage among coal vendors via single cell gel electrophoresis and quantification of 8-hydroxy-2'-deoxyguanosine.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Springer Country of Publication: Netherlands NLM ID: 0364456 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-4919 (Electronic) Linking ISSN: 03008177 NLM ISO Abbreviation: Mol Cell Biochem Subsets: MEDLINE
    • بيانات النشر:
      Publication: New York : Springer
      Original Publication: The Hague, Dr. W. Junk B. V. Publishers.
    • الموضوع:
    • نبذة مختصرة :
      Looking at the development status of Nigeria and other developing nations, most low-income and rural households often use coal as a source of energy which necessitates its trade very close to the communities. Moreover, the effects of exposure to coal mining activities are rarely explored or yet to be studied, not to mention the numerous street coal vendors in Nigeria. This study investigated the oxidative stress levels in serum and urine through the biomarker 8-OHdG and DNA damage via single cell gel electrophoresis (alkaline comet assay). Blood and urine levels of 8-OHdG from 130 coal vendors and 130 population-based controls were determined by ELISA. Alkaline comet assay was also performed on white blood cells for DNA damage. The average values of 8-OHdG in serum and urine of coal vendors were 22.82 and 16.03 ng/ml respectively, which were significantly greater than those detected in controls (p < 0.001; 15.46 and 10.40 ng/ml of 8-OHdG in serum and urine respectively). The average tail length, % DNA in tail and olive tail moment were 25.06 μm, 18.71% and 4.42 respectively for coal vendors. However, for controls, the average values were 4.72 μm, 3.63% and 1.50 for tail length, % DNA in tail and olive tail moment respectively which were much lower than coal vendors (p < 0.001). Therefore, prolonged exposure to coal dusts could lead to higher serum and urinary 8-OHdG and significant DNA damage in coal vendors observed in tail length, % DNA in tail, and olive tail moment by single cell gel electrophoresis. It is therefore established that coal vendors exhibit a huge risk from oxidative stress and assessment of 8-OHdG with single cell gel electrophoresis has proven to be a feasible tool as biomarkers of DNA damage.
      (© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
    • References:
      Petsonk EL, Rose C, Cohen R (2013) Coal mine dust lung disease: new lessons from old exposure. Am J Res Crit Care Med 187(11):1178–1185. https://doi.org/10.1164/rccm.201301-0042CI. (PMID: 10.1164/rccm.201301-0042CI)
      Lan Q, He X (2004) Molecular epidemiological studies on the relationship between indoor coal burning and lung cancer in Xuan Wei, China. Toxicology 198(1–3):301–305. https://doi.org/10.1016/j.tox.2004.02.006. (PMID: 10.1016/j.tox.2004.02.00615138056)
      Celik M, Donbak L, Unal F, Yüzbasioglu D, Aksoy H, Yilmaz S (2007) Cytogenetic damage in workers from a coal-fired power plant. Mutation Res 627(2):158–163. https://doi.org/10.1016/j.mrgentox.2006.11.003. (PMID: 10.1016/j.mrgentox.2006.11.00317178253)
      Karami S, Boffetta P, Brennan P, Stewart PA, Zaridze D, Matveev V, Janout V, Kollarova H, Bencko V, Navratilova M, Szeszenia-Dabrowska N, Mates D, Gromiec JP, Sobotka R, Chow WH, Rothman N, Moore LE (2011) Renal cancer risk and occupational exposure to polycyclic aromatic hydrocarbons and plastics. J Occup Environ Med 53(2):218–223. https://doi.org/10.1097/JOM.0b013e31820a40a3. (PMID: 10.1097/JOM.0b013e31820a40a3212706483065187)
      Cortes-Ramirez J, Naish S, Sly PD, Jagals P (2018) Mortality and morbidity in populations in the vicinity of coal mining: a systematic review. BMC Pub Health 18(1):721. https://doi.org/10.1186/s12889-018-5505-7. (PMID: 10.1186/s12889-018-5505-7)
      Alif SM, Sim MR, Ho C, Glass DC (2022) Cancer and mortality in coal mine workers: a systematic review and meta-analysis. Occup Environ Med 79(5):347–357. https://doi.org/10.1136/oemed-2021-107498. (PMID: 10.1136/oemed-2021-10749834782367)
      León-Mejía G, Espitia-Pérez L, Hoyos-Giraldo LS, Da Silva J, Hartmann A, Henriques JA, Quintana M (2011) Assessment of DNA damage in coal open-cast mining workers using the cytokinesis-blocked micronucleus test and the comet assay. Sci Total Environ 409(4):686–691. https://doi.org/10.1016/j.scitotenv.2010.10.049. (PMID: 10.1016/j.scitotenv.2010.10.04921215992)
      Lushchak VI (2014) Free radicals, reactive oxygen species, oxidative stress and its classification. Chemico-Biol Interactions 224:164–175. https://doi.org/10.1016/j.cbi.2014.10.016. (PMID: 10.1016/j.cbi.2014.10.016)
      Valavanidis A, Vlachogianni T, Fiotakis C (2009) 8-hydroxy-2’ -deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health Part C Environ Carcino Ecotox Rev 27(2):120–139. https://doi.org/10.1080/10590500902885684. (PMID: 10.1080/10590500902885684)
      Kasai H (1997) Analysis of a form of oxidative DNA damage, 8-hydroxy-2’-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutation Res 387(3):147–163. https://doi.org/10.1016/s1383-5742(97)00035-5. (PMID: 10.1016/s1383-5742(97)00035-59439711)
      Beckman KB, Ames BN (1997) Oxidative decay of DNA. J Biol Chem 272(32):19633–19636. https://doi.org/10.1074/jbc.272.32.19633. (PMID: 10.1074/jbc.272.32.196339289489)
      Martinez-Moral MP, Kannan K (2019) How stable is oxidative stress level? An observational study of intra- and inter-individual variability in urinary oxidative stress biomarkers of DNA, proteins, and lipids in healthy individuals. Environ Int 123:382–389. https://doi.org/10.1016/j.envint.2018.12.009. (PMID: 10.1016/j.envint.2018.12.00930572170)
      Barregard L, Møller P, Henriksen T, Mistry V, Koppen G, Rossner P Jr, Sram RJ, Weimann A, Poulsen HE, Nataf R et al (2013) Human and methodological sources of variability in the measurement of urinary 8-oxo-7,8-dihydro-2’-deoxyguanosine. Antiox Red Sig 18(18):2377–2391. https://doi.org/10.1089/ars.2012.4714. (PMID: 10.1089/ars.2012.4714)
      Rossner P Jr, Mistry V, Singh R, Sram RJ, Cooke MS (2013) Urinary 8-oxo-7,8-dihydro-2’-deoxyguanosine values determined by a modified ELISA improves agreement with HPLC-MS/MS. Biochem Biophys Res Com 440(4):725–730. https://doi.org/10.1016/j.bbrc.2013.09.133. (PMID: 10.1016/j.bbrc.2013.09.13324120947)
      Pruslin FH, To SE, Winston R, Rodman TC (1991) Caveats and suggestions for the ELISA. J Immunol Method 137(1):27–35. https://doi.org/10.1016/0022-1759(91)90390-2. (PMID: 10.1016/0022-1759(91)90390-2)
      Mikulskis A, Yeung D, Subramanyam M, Amaravadi L (2011) Solution ELISA as a platform of choice for development of robust, drug tolerant immunogenicity assays in support of drug development. J Immunol Method 365(1–2):38–49. https://doi.org/10.1016/j.jim.2010.11.011. (PMID: 10.1016/j.jim.2010.11.011)
      de Lapuente J, Lourenço J, Mendo SA, Borràs M, Martins MG, Costa PM, Pacheco M (2015) The comet assay and its applications in the field of ecotoxicology: a mature tool that continues to expand its perspectives. Front Genet 6:180. https://doi.org/10.3389/fgene.2015.00180. (PMID: 10.3389/fgene.2015.00180260898334454841)
      Cordelli E, Bignami M, Pacchierotti F (2021) Comet assay: a versatile but complex tool in genotoxicity testing. Toxicol Res 10(1):68–78. https://doi.org/10.1093/toxres/tfaa093. (PMID: 10.1093/toxres/tfaa093)
      Smith KR, Frumkin H, Balakrishnan K, Butler CD, Chafe ZA, Fairlie I, Kinney P, Kjellstrom T, Mauzerall DL, McKone TE, McMichael AJ, Schneider M (2013) Energy and human health. Ann Rev Public Health 34:159–188. https://doi.org/10.1146/annurev-publhealth-031912-114404. (PMID: 10.1146/annurev-publhealth-031912-114404)
      Wong JYY, Downward GS, Hu W, Portengen L, Seow WJ, Silverman DT, Bassig BA, Zhang J, Xu J, Ji BT, Li J, He J, Yang K, Tian L, Shen M, Huang Y, Vermeulen R, Rothman N, Lan Q (2019) Lung cancer risk by geologic coal deposits: a case-control study of female never-smokers from Xuanwei and Fuyuan, China. Int J Cancer 144(12):2918–2927. https://doi.org/10.1002/ijc.32034. (PMID: 10.1002/ijc.320343051143510329776)
      Tielemans E, Heederik D, Burdorf A, Vermeulen R, Veulemans H, Kromhout H, Hartog K (1999) Assessment of occupational exposures in a general population: comparison of different methods. Occup Environ Med 56(3):145–151. https://doi.org/10.1136/oem.56.3.145. (PMID: 10.1136/oem.56.3.145104483211757718)
      Sani A, Abdullahi IL (2016) A bio-assessment of DNA damage by alkaline comet assay in metal workers of Kano metropolis, Nigeria. Toxicol Rep 3:804–806. https://doi.org/10.1016/j.toxrep.2016.10.003. (PMID: 10.1016/j.toxrep.2016.10.003289596075616132)
      Zanolin ME, Girardi P, Degan P, Rava M, Olivieri M, Di Gennaro G, Nicolis M, De Marco R (2015) Measurement of a urinary marker (8-hydroxydeoxy-guanosine, 8-OHdG) of DNA oxidative stress in epidemiological surveys: a pilot study. Int J Biol Markers 30(3):e341–e345. https://doi.org/10.5301/jbm.5000129. (PMID: 10.5301/jbm.500012925588860)
      Gao Y, Wang P, Wang Z, Han L, Li J, Tian C, Zhao F, Wang J, Zhao F, Zhang Q, Lyu Y (2019) Serum 8-hydroxy-2’-deoxyguanosine level as a potential biomarker of oxidative DNA damage induced by ionizing radiation in human peripheral blood. Dose-Response 17(1):1559325818820649. https://doi.org/10.1177/1559325818820649. (PMID: 10.1177/1559325818820649306709376327346)
      Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175(1):184–191. https://doi.org/10.1016/0014-4827(88)90265-0. (PMID: 10.1016/0014-4827(88)90265-03345800)
      Kayaaltı Z, Yavuz İ, Söylemez E, Bacaksız A, Tutkun E, Sayal A, Söylemezoğlu T (2015) Evaluation of DNA damage using 3 comet assay parameters in workers occupationally exposed to lead. Arch Environ Occup Health 70(3):120–125. https://doi.org/10.1080/19338244.2013.787964. (PMID: 10.1080/19338244.2013.78796424965324)
      Lu Y, Liu Y, Yang C (2017) Evaluating in vitro DNA damage using comet assay. J Vis Exp 128:56450. https://doi.org/10.3791/56450. (PMID: 10.3791/56450)
      Kumaravel TS, Jha AN (2006) Reliable comet assay measurements for detecting DNA damage induced by ionising radiation and chemicals. Mutation Res 605(1–2):7–16. https://doi.org/10.1016/j.mrgentox.2006.03.002. (PMID: 10.1016/j.mrgentox.2006.03.00216621680)
      Fenga C, Gangemi S, Teodoro M, Rapisarda V, Golokhvast K, Docea AO, Tsatsakis AM, Costa C (2017) 8-Hydroxydeoxyguanosine as a biomarker of oxidative DNA damage in workers exposed to low-dose benzene. Toxicol Rep 4:291–295. https://doi.org/10.1016/j.toxrep.2017.05.008. (PMID: 10.1016/j.toxrep.2017.05.008289596525615153)
      Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627. https://doi.org/10.1126/science.1114397. (PMID: 10.1126/science.111439716456071)
      Zhang C, Nestorova G, Rissman RA, Feng J (2013) Detection and quantification of 8-hydroxy-2’-deoxyguanosine in Alzheimer’s transgenic mouse urine using capillary electrophoresis. Electrophoresis 34(15):2268–2274. https://doi.org/10.1002/elps.201300036. (PMID: 10.1002/elps.201300036237125333789118)
      Karpouzi C, Nikolaidis S, Kabasakalis A, Tsalis G, Mougios V (2016) Exercise-induced oxidatively damaged DNA in humans: evaluation in plasma or urine? Biomarkers 21(3):204–207. https://doi.org/10.3109/1354750X.2015.1134667. (PMID: 10.3109/1354750X.2015.113466726849281)
      Kurgan Ş, Önder C, Altıngöz SM, Bağış N, Uyanık M, Serdar MA, Kantarcı A (2015) High sensitivity detection of salivary 8-hydroxy deoxyguanosine levels in patients with chronic periodontitis. J Periodontal Res 50(6):766–774. https://doi.org/10.1111/jre.12263. (PMID: 10.1111/jre.1226325662588)
      Sliwinska A, Kwiatkowski D, Czarny P, Toma M, Wigner P, Drzewoski J, Fabianowska-Majewska K, Szemraj J, Maes M, Galecki P, Sliwinski T (2016) The levels of 7,8-dihydrodeoxyguanosine (8-oxoG) and 8-oxoguanine DNA glycosylase 1 (OGG1)—a potential diagnostic biomarkers of Alzheimer’s disease. J Neurol Sci 368:155–159. https://doi.org/10.1016/j.jns.2016.07.008. (PMID: 10.1016/j.jns.2016.07.00827538622)
      Ding X, Hiraku Y, Ma N, Kato T, Saito K, Nagahama M, Semba R, Kuribayashi K, Kawanishi S (2005) Inducible nitric oxide synthase-dependent DNA damage in mouse model of inflammatory bowel disease. Cancer Sci 96(3):157–163. https://doi.org/10.1111/j.1349-7006.2005.00024.x. (PMID: 10.1111/j.1349-7006.2005.00024.x1577161811160000)
      Tsai-Turton M, Luong BT, Tan Y, Luderer U (2007) Cyclophosphamide-induced apoptosis in COV434 human granulosa cells involves oxidative stress and glutathione depletion. Toxicol Sci 98(1):216–230. https://doi.org/10.1093/toxsci/kfm087. (PMID: 10.1093/toxsci/kfm08717434952)
      Kim J, Kim NH, Sohn E, Kim CS, Kim JS (2010) Methylglyoxal induces cellular damage by increasing argpyrimidine accumulation and oxidative DNA damage in human lens epithelial cells. Biochem Biophy Res Commun 391(1):346–351. https://doi.org/10.1016/j.bbrc.2009.11.061. (PMID: 10.1016/j.bbrc.2009.11.061)
      Cafueri G, Parodi F, Pistorio A, Bertolotto M, Ventura F, Gambini C, Bianco P, Dallegri F, Pistoia V, Pezzolo A, Palombo D (2012) Endothelial and smooth muscle cells from abdominal aortic aneurysm have increased oxidative stress and telomere attrition. PLoS ONE 7(4):e35312. https://doi.org/10.1371/journal.pone.0035312. (PMID: 10.1371/journal.pone.0035312225147263325957)
      Murata M, Thanan R, Ma N, Kawanishi S (2012) Role of nitrative and oxidative DNA damage in inflammation-related carcinogenesis. J Biomed Biotech. https://doi.org/10.1155/2012/623019. (PMID: 10.1155/2012/623019)
      Debelec-Butuner B, Bostancı A, Heiserich L, Eberle C, Ozcan F, Aslan M, Roggenbuck D, Korkmaz KS (2016) Automated cell-based quantitation of 8-OHdG damage. Method Mol Biol 1516:299–308. https://doi.org/10.1007/7651_2016_344. (PMID: 10.1007/7651_2016_344)
      Korkmaz K, Butuner B, Roggenbuck D (2018) Detection of 8-OHdG as a diagnostic biomarker. J Lab Prec Med. https://doi.org/10.21037/jlpm.2018.11.01. (PMID: 10.21037/jlpm.2018.11.01)
      IARC (2010) IARC monographs on the evaluation of carcinogenic risks to humans, Vol. 95: household use of solid fuels and high temperature frying. Rep., World Health Organanization, IARC, Lyon, France. https://monographs.iarc.fr/wp-content/uploads/2018/06/mono95.pdf.
      USEPA (2020) Coal ash basics. https://www.epa.gov/coalash/coal-ash-basics.
      Altıkulaç A, Turhan Ş, Kurnaz A, Gören E, Duran C, Hançerlioğulları A, Uğur FA (2022) Assessment of the enrichment of heavy metals in coal and its combustion residues. ACS Omega 7(24):21239–21245. https://doi.org/10.1021/acsomega.2c02308. (PMID: 10.1021/acsomega.2c02308359352879347966)
      Kuo HW, Chang SF, Wu KY, Wu FY (2003) Chromium (VI) induced oxidative damage to DNA: increase of urinary 8-hydroxydeoxyguanosine concentrations (8-OHdG) among electroplating workers. Occup Environ Med 60(8):590–594. https://doi.org/10.1136/oem.60.8.590. (PMID: 10.1136/oem.60.8.590128830201740592)
      Pylväs-Eerola M, Karihtala P, Puistola U (2015) Preoperative serum 8-hydroxydeoxyguanosine is associated with chemoresistance and is a powerful prognostic factor in endometrioid-type epithelial ovarian cancer. BMC Cancer 15:493. https://doi.org/10.1186/s12885-015-1504-6. (PMID: 10.1186/s12885-015-1504-6261344004489129)
      Setyaningsih Y, Husodo AH, Astuti I (2015) Detection of urinary 8-hydroxydeoxyguanosine (8-OHdG) levels as a biomarker of oxidative DNA damage among home industry workers exposed to chromium. Procedia Environ Sci 23:290–296. (PMID: 10.1016/j.proenv.2015.01.043)
      Silva R, Folgosa F, Soares P, Pereira AS, Garcia R, Gestal-Otero JJ, Tavares P, Gomes da Silva MD (2013) Occupational cosmic radiation exposure in Portuguese airline pilots: study of a possible correlation with oxidative biological markers. Radiat Environ Biophys 52(2):211–220. https://doi.org/10.1007/s00411-013-0460-2. (PMID: 10.1007/s00411-013-0460-223412012)
      Xuan ZQ, Gao SY, Ye AF, Cai DL, Yu SF, Zhao YX (2013) Detection and analysis of 8-hydroxy-2’-deoxyguanosine in urine in radiation workers. Chin J Health Lab Tech 75(13):127–132.
      El-Benhawy SA, Sadek NA, Behery AK, Issa NM, Ali OK (2016) Chromosomal aberrations and oxidative DNA adduct 8-hydroxy-2-deoxyguanosine as biomarkers of radiotoxicity in radiation workers. J Radiat Res App Sci 9:249–258. https://doi.org/10.1016/j.jrras.2015.12.004. (PMID: 10.1016/j.jrras.2015.12.004)
      Mourad BH, Gaballah IF (2023) Studying the association between occupational stress and urinary levels of oxidative stress biomarkers (8-OHdG and biopyrrins) in Brickfield workers. J Occup Environ Med 65(1):60–66. https://doi.org/10.1097/JOM.0000000000002677. (PMID: 10.1097/JOM.000000000000267735973041)
      Chang FK, Chen ML, Cheng SF, Shih TS, Mao IF (2007) Dermal absorption of solvents as a major source of exposure among shipyard spray painters. J Occup Environ Med 49(4):430–436. https://doi.org/10.1097/JOM.0b013e31803b94ac. (PMID: 10.1097/JOM.0b013e31803b94ac17426526)
      Kurt OK, Ergun D, Anlar HG, Hazar M, Aydin Dilsiz S, Karatas M, Basaran N (2023) Evaluation of oxidative stress parameters and genotoxic effects in patients with work-related asthma and silicosis. J Occup Environ Med 65(2):146–151. https://doi.org/10.1097/JOM.0000000000002701. (PMID: 10.1097/JOM.000000000000270136075368)
      Mehrdad R, Aghdaei S, Pouryaghoub G (2015) Urinary 8-hydroxy-deoxyguanosine as a biomarker of oxidative DNA damage in employees of subway system. Acta Med Iran 53(5):287–292. (PMID: 26024703)
      Omari Shekaftik S, Nasirzadeh N (2021) 8-Hydroxy-2’-deoxyguanosine (8-OHdG) as a biomarker of oxidative DNA damage induced by occupational exposure to nanomaterials: a systematic review. Nanotoxicology 15(6):850–864. https://doi.org/10.1080/17435390.2021.1936254. (PMID: 10.1080/17435390.2021.193625434171202)
      Samir AM, Rashed LA (2018) Effects of occupational exposure to aluminium on some oxidative stress and DNA damage parameters. Hum Exp Toxicol 37(9):901–908. https://doi.org/10.1177/0960327117747024. (PMID: 10.1177/096032711774702429239217)
      Li YS, Song MF, Kasai H, Kawai K (2013) Generation and threshold level of 8-OHdG as oxidative DNA damage elicited by low dose ionizing radiation. Genes Environ 35(3):88–92. (PMID: 10.3123/jemsge.2013.006)
      Gunes AE, Yılmaz O, Erbas C, Dagli SN (1992) Celik H (2021) High serum 8-hydroxy-2’-deoxyguanosine levels predict DNA damage and aging in professional divers. Rev da Assoc Med Bras 67(11):1701–1705. https://doi.org/10.1590/1806-9282.20210748. (PMID: 10.1590/1806-9282.20210748)
      Yang HY (2019) Prediction of pneumoconiosis by serum and urinary biomarkers in workers exposed to asbestos-contaminated minerals. PLoS ONE 14(4):e0214808. https://doi.org/10.1371/journal.pone.0214808. (PMID: 10.1371/journal.pone.0214808309467716448873)
      Loft S, Fischer-Nielsen A, Jeding IB, Vistisen K, Poulsen HE (1993) 8-Hydroxydeoxyguanosine as a urinary biomarker of oxidative DNA damage. J Toxicol Environ Health 40(2–3):391–404. https://doi.org/10.1080/15287399309531806. (PMID: 10.1080/152873993095318068230310)
      Gedik CM, Grant G, Morrice PC, Wood SG, Collins AR (2005) Effects of age and dietary restriction on oxidative DNA damage, antioxidant protection and DNA repair in rats. Eur J Nutr 44(5):263–272. https://doi.org/10.1007/s00394-004-0520-0. (PMID: 10.1007/s00394-004-0520-015278370)
      Pilger A, Rüdiger HW (2006) 8-Hydroxy-2’-deoxyguanosine as a marker of oxidative DNA damage related to occupational and environmental exposures. Int Arch Occup Environ Health 80(1):1–15. https://doi.org/10.1007/s00420-006-0106-7. (PMID: 10.1007/s00420-006-0106-716685565)
      Sauvain JJ, Setyan A, Wild P, Tacchini P, Lagger G, Storti F, Deslarzes S, Guillemin M, Rossi MJ, Riediker M (2011) Biomarkers of oxidative stress and its association with the urinary reducing capacity in bus maintenance workers. J Occup Med Toxicol 6(1):18. https://doi.org/10.1186/1745-6673-6-18. (PMID: 10.1186/1745-6673-6-18216197153135575)
      Sakano N, Wang DH, Takahashi N, Wang B, Sauriasari R, Kanbara S, Sato Y, Takigawa T, Takaki J, Ogino K (2009) Oxidative stress biomarkers and lifestyles in Japanese healthy people. J Clin Biochem Nutr 44(2):185–195. https://doi.org/10.3164/jcbn.08-252. (PMID: 10.3164/jcbn.08-252193082732654475)
      Langie SA, Azqueta A, Collins AR (2015) The comet assay: past, present, and future. Front Genet 6:266. https://doi.org/10.3389/fgene.2015.00266. (PMID: 10.3389/fgene.2015.00266263220774534839)
      Neri M, Milazzo D, Ugolini D, Milic M, Campolongo A, Pasqualetti P, Bonassi S (2015) Worldwide interest in the comet assay: a bibliometric study. Mutagenesis 30(1):155–163. https://doi.org/10.1093/mutage/geu061. (PMID: 10.1093/mutage/geu06125527738)
      Kurth L, Kolker A, Engle M, Geboy N, Hendryx M, Orem W, McCawley M, Crosby L, Tatu C, Varonka M, DeVera C (2015) Atmospheric particulate matter in proximity to mountaintop coal mines: sources and potential environmental and human health impacts. Environ Geochem Health 37(3):529–544. https://doi.org/10.1007/s10653-014-9669-5. (PMID: 10.1007/s10653-014-9669-525537164)
      McCunney RJ, Yong M (2022) Coal miners and lung cancer: can mortality studies offer a perspective on rat inhalation studies of poorly soluble low toxicity particles? Front Pub Health 10:907157. https://doi.org/10.3389/fpubh.2022.907157. (PMID: 10.3389/fpubh.2022.907157)
      Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68(4):820–823. https://doi.org/10.1073/pnas.68.4.820. (PMID: 10.1073/pnas.68.4.8205279523389051)
      Kurth LM, McCawley M, Hendryx M, Lusk S (2014) Atmospheric particulate matter size distribution and concentration in West Virginia coal mining and non-mining areas. J Exp Sci Environ Epid 24(4):405–411. https://doi.org/10.1038/jes.2014.2. (PMID: 10.1038/jes.2014.2)
      Luanpitpong S, Chen M, Knuckles T, Wen S, Luo J, Ellis E, Hendryx M, Rojanasakul Y (2014) Appalachian mountaintop mining particulate matter induces neoplastic transformation of human bronchial epithelial cells and promotes tumor formation. Environ Sci Technol 48(21):12912–12919. https://doi.org/10.1021/es504263u. (PMID: 10.1021/es504263u253470544224494)
      Clarke MA, Joshu CE (2017) Early life exposures and adult cancer risk. Epidemiol Rev 39(1):11–27. https://doi.org/10.1093/epirev/mxx004. (PMID: 10.1093/epirev/mxx004284071015858036)
      OHSA (2019) Silica, crystalline. Health Effects. US Dep. Labor. https://www.osha.gov/dsg/topics/silicacrystalline/health_effects_silica.html.
      León-Mejía G, Quintana M, Debastiani R, Dias J, Espitia-Pérez L, Hartmann A, Henriques JA, Da Silva J (2014) Genetic damage in coal miners evaluated by buccal micronucleus cytome assay. Ecotox Environ Safety 107:133–139. https://doi.org/10.1016/j.ecoenv.2014.05.023. (PMID: 10.1016/j.ecoenv.2014.05.023)
      Espitia-Pérez L, da Silva J, Brango H, Espitia-Pérez P, Pastor-Sierra K, Salcedo-Arteaga S, de Souza CT, Dias JF, Hoyos-Giraldo LS, Gómez-Pérez M, Salcedo-Restrepo D, Henriques JAP (2018) Genetic damage in environmentally exposed populations to open-pit coal mining residues: analysis of buccal micronucleus cytome (BMN-cyt) assay and alkaline, Endo III and FPG high-throughput comet assay. Mutat Res 836(Pt B):24–35. https://doi.org/10.1016/j.mrgentox.2018.06.002. (PMID: 10.1016/j.mrgentox.2018.06.002)
      Espitia-Pérez L, Sosa MQ, Salcedo-Arteaga S, León-Mejía G, Hoyos-Giraldo LS, Brango H, Kvitko K, da Silva J, Henriques JA (2016) Polymorphisms in metabolism and repair genes affects DNA damage caused by open-cast coal mining exposure. Mutat Res 808:38–51. https://doi.org/10.1016/j.mrgentox.2016.08.003. (PMID: 10.1016/j.mrgentox.2016.08.003)
      Meyer AV, Tolochko TA, Minina VI, Timofeeva AA, Larionov AV (2020) Complex approach to evaluating genotoxicity from occupational factors in coal mining industry. Russ J Genet 56:611–617. https://doi.org/10.1134/S1022795420050105. (PMID: 10.1134/S1022795420050105)
      Matzenbacher CA, Garcia AL, Dos Santos MS, Nicolau CC, Premoli S, Corrêa DS, de Souza CT, Niekraszewicz L, Dias JF, Delgado TV, Kalkreuth W, Grivicich I, da Silva J (2017) DNA damage induced by coal dust, fly and bottom ash from coal combustion evaluated using the micronucleus test and comet assay in vitro. J Hazard Mater 324(Pt B):781–788. https://doi.org/10.1016/j.jhazmat.2016.11.062. (PMID: 10.1016/j.jhazmat.2016.11.06227894755)
      Wolf G, Arndt D, Kotschy-Lang N, Obe G (2004) Chromosomal aberrations in uranium and coal miners. Int J Radiat Biol 80(2):147–153. https://doi.org/10.1080/09553000310001621446. (PMID: 10.1080/0955300031000162144615164796)
      Kulemin YE, Minina VI, Sinitsky MY, Savchenko YA, Volobaev VP (2019) Conditions of the chromosomal damage in coal miners. Hygiene Sanitation 96(5):455–459. (PMID: 10.18821/0016-9900-2017-96-5-455-459)
      da Silva FMR, Júnior Tavella RA, Fernandes CLF, Dos Santos M (2021) Genetic damage in coal and uranium miners. Mutat Res 866:503348. https://doi.org/10.1016/j.mrgentox.2021.503348. (PMID: 10.1016/j.mrgentox.2021.503348)
      Mumford JL, He XZ, Chapman RS, Cao SR, Harris DB, Li XM, Xian YL, Jiang WZ, Xu CW, Chuang JC (1987) Lung cancer and indoor air pollution in Xuan Wei, China. Science 235(4785):217–220. https://doi.org/10.1126/science.3798109. (PMID: 10.1126/science.37981093798109)
      DeMarini DM, Landi S, Tian D, Hanley NM, Li X, Hu F, Roop BC, Mass MJ, Keohavong P, Gao W, Olivier M, Hainaut P, Mumford JL (2001) Lung tumor KRAS and TP53 mutations in nonsmokers reflect exposure to PAH-rich coal combustion emissions. Cancer Res 61(18):6679–6681. (PMID: 11559534)
      Keohavong P, Lan Q, Gao WM, Zheng KC, Mady HH, Melhem MF, Mumford JL (2005) Detection of p53 and K-ras mutations in sputum of individuals exposed to smoky coal emissions in Xuan Wei County, China. Carcinogenesis 26(2):303–308. https://doi.org/10.1093/carcin/bgh328. (PMID: 10.1093/carcin/bgh32815564291)
      Lan Q, He X, Shen M, Tian L, Liu LZ, Lai H, Chen W, Berndt SI, Hosgood HD, Lee KM, Zheng T, Blair A, Chapman RS (2008) Variation in lung cancer risk by smoky coal subtype in Xuanwei, China. Int J Cancer 123(9):2164–2169. https://doi.org/10.1002/ijc.23748. (PMID: 10.1002/ijc.23748187127242974309)
      Rohr P, da Silva J, da Silva FR, Sarmento M, Porto C, Debastiani R, Dos Santos CE, Dias JF, Kvitko K (2013) Evaluation of genetic damage in open-cast coal mine workers using the buccal micronucleus cytome assay. Environ Mol Mutagen 54(1):65–71. https://doi.org/10.1002/em.21744. (PMID: 10.1002/em.2174423055270)
      Rohr P, Kvitko K, da Silva FR, Menezes AP, Porto C, Sarmento M, Decker N, Reyes JM et al (2013) Genetic and oxidative damage of peripheral blood lymphocytes in workers with occupational exposure to coal. Mutat Res 758(1–2):23–28. https://doi.org/10.1016/j.mrgentox.2013.08.006. (PMID: 10.1016/j.mrgentox.2013.08.006)
      Sinitsky MY, Minina VI, Gafarov NI, Asanov MA, Larionov AV, Ponasenko AV, Volobaev VP, Druzhinin VG (2016) Assessment of DNA damage in underground coal miners using the cytokinesis-block micronucleus assay in peripheral blood lymphocytes. Mutagenesis 31(6):669–675. https://doi.org/10.1093/mutage/gew038. (PMID: 10.1093/mutage/gew03827530330)
      Li J, Zhu X, Yu K, Jiang H, Zhang Y, Wang B, Liu X, Deng S, Hu J, Deng Q, Sun H, Guo H, Zhang X, Chen W, Yuan J, He M, Bai Y, Han X, Liu B, Liu C, Guo Y, Zhang B, Zhang Z, Hu FB, Gao W, Li L, Lathrop M, Laprise C, Liang L, Wu T (2018) Exposure to polycyclic aromatic hydrocarbons and accelerated DNA methylation aging. Environ Health Perspect 126(6):067005. https://doi.org/10.1289/EHP2773. (PMID: 10.1289/EHP2773299062626108582)
      NIOSH (2011) NIOSH CIB 64: coal mine dust exposures—centers for disease control and prevention national institute for occupational safety and health: a review of information published since 1995.
      IARC (1997) IARC monographs on the evaluation of carcinogenic risks to humans: silica, some silicates, coal dust, and pararamid fibrils. World Health Organization, Geneva, pp 337–406.
      Hendryx M, O’Donnell K, Horn K (2008) Lung cancer mortality is elevated in coal-mining areas of Appalachia. Lung Cancer 62(1):1–7. https://doi.org/10.1016/j.lungcan.2008.02.004. (PMID: 10.1016/j.lungcan.2008.02.00418353487)
      Christian WJ, Huang B, Rinehart J, Hopenhayn C (2011) Exploring geographic variation in lung cancer incidence in Kentucky using a spatial scan statistic: elevated risk in the Appalachian coal-mining region. Public Health Rep 126(6):789–796. https://doi.org/10.1177/003335491112600604. (PMID: 10.1177/003335491112600604220430943185314)
      Ahern M, Hendryx M (2012) Cancer mortality rates in Appalachian mountaintop coal mining areas. J Environ Occu Sci 1:63–70. (PMID: 10.5455/jeos.20120702022809)
      Hendryx M, Islam MS, Dong GH, Paul G (2020) Air pollution emissions 2008–2018 from Australian coal mining: implications for public and occupational health. Int J Environ Res Public Health 17(5):1570. https://doi.org/10.3390/ijerph17051570. (PMID: 10.3390/ijerph17051570321213447084742)
      Tovalin H, Valverde M, Morandi MT, Blanco S, Whitehead L, Rojas E (2006) DNA damage in outdoor workers occupationally exposed to environmental air pollutants. Occup Environ Med 63(4):230–236. https://doi.org/10.1136/oem.2005.019802. (PMID: 10.1136/oem.2005.019802165567412078085)
      Wang Y, Xu C, Du LQ, Cao J, Liu JX, Su X, Zhao H, Fan FY, Wang B, Katsube T, Fan SJ, Liu Q (2013) Evaluation of the comet assay for assessing the dose-response relationship of DNA damage induced by ionizing radiation. Int J Mol Sci 14(11):22449–22461. https://doi.org/10.3390/ijms141122449. (PMID: 10.3390/ijms141122449242408073856073)
      Gaetani S, Monaco F, Bracci M, Ciarapica V, Impollonia G, Valentino M, Tomasetti M, Santarelli L, Amati M (2018) DNA damage response in workers exposed to low-dose ionising radiation. Occup Environ Med 75(10):724–729. https://doi.org/10.1136/oemed-2018-105094. (PMID: 10.1136/oemed-2018-10509430087158)
      Intranuovo G, Schiavulli N, Cavone D, Birtolo F, Cocco P, Vimercati L, Macinagrossa L, Giordano A, Perrone T, Ingravallo G, Mazza P, Strusi M, Spinosa C, Specchia G, Ferri GM (2018) Assessment of DNA damages in lymphocytes of agricultural workers exposed to pesticides by comet assay in a cross-sectional study. Biomarkers 23(5):462–473. https://doi.org/10.1080/1354750X.2018.1443513. (PMID: 10.1080/1354750X.2018.144351329493297)
      Surniyantoro HNE, Yusuf D, Rahardjo T, Rahajeng N, Kisnanto T, Nurhayati S, Lusiyanti Y, Syaifudin M, Hande MP (2022) Assessment of hOGG1 genetic polymorphism (rs1052133) and DNA damage in radiation-exposed workers. Asian Pac J Cancer Prev 23(12):4005–4012. https://doi.org/10.31557/APJCP.2022.23.12.4005. (PMID: 10.31557/APJCP.2022.23.12.4005365799809971479)
      Jeon J, Zhang Q, Chepaitis PS, Greenwald R, Black M, Wright C (2023) Toxicological assessment of particulate and metal hazards associated with vaping frequency and device age. Toxics 11(2):155. https://doi.org/10.3390/toxics11020155. (PMID: 10.3390/toxics11020155368510309967192)
      Marlin DJ, Johnson L, Kingston DA, Smith NC, Deaton CM, Mann S, Heaton P, Van Vugt F, Saunders K, Kydd J, Harris PA (2004) Application of the comet assay for investigation of oxidative DNA damage in equine peripheral blood mononuclear cells. J Nutr 134(8 Suppl):2133S-2140S. https://doi.org/10.1093/jn/134.8.2133S. (PMID: 10.1093/jn/134.8.2133S15284420)
      Nakajima H, Unoda K, Ito T, Kitaoka H, Kimura F, Hanafusa T (2012) The relation of urinary 8-OHdG, a marker of oxidative stress to DNA, and clinical outcomes for ischemic stroke. Open Neurol J 6:51–57. https://doi.org/10.2174/1874205X01206010051. (PMID: 10.2174/1874205X01206010051227545963386501)
      Subash P, Jayanthi R (2018) Comet assay and urinary 8-OHdG: a marker of oxidative stress in oral cancer with Puducherry population. J Med Sci Clin Res 6(11):56–65. https://doi.org/10.18535/jmscr/v6i11.11. (PMID: 10.18535/jmscr/v6i11.11)
    • Contributed Indexing:
      Keywords: 8-hydroxy-2’-deoxyguanosine; Biomarker; Coal; Electrophoresis; Oxidative DNA damage
    • الرقم المعرف:
      88847-89-6 (8-Hydroxy-2'-Deoxyguanosine)
      0 (Coal)
      G9481N71RO (Deoxyguanosine)
      0 (Biomarkers)
    • الموضوع:
      Date Created: 20230818 Date Completed: 20240903 Latest Revision: 20240903
    • الموضوع:
      20250114
    • الرقم المعرف:
      10.1007/s11010-023-04826-9
    • الرقم المعرف:
      37594629