Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

How to analyze continuous and discrete repeated measures in small-sample cross-over trials?

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Oxford University Press Country of Publication: England NLM ID: 0370625 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1541-0420 (Electronic) Linking ISSN: 0006341X NLM ISO Abbreviation: Biometrics Subsets: MEDLINE
    • بيانات النشر:
      Publication: March 2024- : [Oxford] : Oxford University Press
      Original Publication: Alexandria Va : Biometric Society
    • الموضوع:
    • نبذة مختصرة :
      To optimize the use of data from a small number of subjects in rare disease trials, an at first sight advantageous design is the repeated measures cross-over design. However, it is unclear how these within-treatment period and within-subject clustered data are best analyzed in small-sample trials. In a real-data simulation study based upon a recent epidermolysis bullosa simplex trial using this design, we compare non-parametric marginal models, generalized pairwise comparison models, GEE-type models and parametric model averaging for both repeated binary and count data. The recommendation of which methodology to use in rare disease trials with a repeated measures cross-over design depends on the type of outcome and the number of time points the treatment has an effect on. The non-parametric marginal model testing the treatment-time-interaction effect is suitable for detecting between group differences in the shapes of the longitudinal profiles. For binary outcomes with the treatment effect on a single time point, the parametric model averaging method is recommended, while in the other cases the unmatched generalized pairwise comparison methodology is recommended. Both provide an easily interpretable effect size measure, and do not require exclusion of periods or subjects due to incompleteness.
      (© 2023 The International Biometric Society.)
    • References:
      Anderson, W. & Verbeeck, J. (2023) Exact permutation and bootstrap distribution of generalized pairwise comparisons statistics. Mathematics, 11, 1502.
      Aoki, Y., Röshammar, D., Hamrén, B. & Hooker, A.C. (2017) Model selection and averaging of nonlinear mixed-effect models for robust phase III dose selection. Journal of Pharmacokinetics and Pharmacodynamics, 44, 581-597.
      Arnold, B. & Strauss, D. (1991) Pseudolikelihood estimation: some examples. Sankhya: the Indian Journal of Statistics-Series B, 53, 233-243.
      Barnard, G. (1947) Significance tests for 2 2 tables. Biometrika, 34, 123-138.
      Bartlett, M. (1937) Properties of sufficiency and statistical tests. Proceedings of the Royal Society A, 160, 268-282.
      Beunckens, C., Sotto, C. & Molenberghs, G. (2008) A simulation study comparing weighted estimating equations with multiple imputation based estimating equations for longitudinal binary data. Computational Statistics & Data Analysis, 52, 1533-1548.
      Bretz, F., Pinheiro, J.C. & Branson, M. (2005) Combining multiple comparisons and modeling techniques in dose-response studies. Biometrics, 61, 738-748.
      Brunner, E., Domhof, S. & Langer, F. (2002) Nonparametric analysis of longitudinal data in factorial experiments. New York: John Wiley & Sons.
      Buyse, M. (2010) Generalized pairwise comparisons of prioritized outcomes in the two-sample problem. Statistics in Medicine, 29, 3245-3257.
      Chatfield, C. (1995) Model uncertainty, data mining and statistical inference. Journal of the Royal Statistical Society. Series A, 158, 419-466.
      Coulombe, P. & Lee, C. (2012) Defining keratin protein function in skin epithelia: epidermolysis bullosa simplex and its aftermath. Journal of Investigative Dermatology, 132, 763-775.
      Dwan, K., Li, T., Altman, D.G. & Elbourne, D. (2019) Consort 2010 statement: extension to randomised crossover trials. BMJ, 366, l4378.
      Erguler, K. (2016) Package ‘Barnard'. https://github.com/kerguler/Barnard.
      Finkelstein, D. & Schoenfeld, D. (1999) Combining mortality and longitudinal measures in clinical trials. Statistics in Medicine, 18, 1341-1354.
      Geroldinger, M., Verbeeck, J., Thiel, K.E., Molenberghs, G., Bathke, A.C., Laimer, M. & Zimmermann, G. (2023) A neutral comparison of statistical methods for analyzing longitudinally measured ordinal outcomes in rare diseases. Biometrical Journal, e2200236. https://doi.org/10.1002/bimj.202200236. Epub ahead of print.
      Hurvich, C. & Tsai, C. (1989) Regression and time series model selection in small samples. Biometrika, 76, 297-307.
      Konietschke, F. & Pauly, M. (2012) A studentized permutation test for the nonparametric Behrens-Fisher problem in paired data. Electronic Journal of Statistics, 6, 1358-1372.
      le Cessie, S. & van Houwelingen, J. (1994) Logistic regression for correlated binary data. Applied Statistics, 43, 95-108.
      Li, P. & Redden, D. (2015) Small-sample performance of bias-corrected sandwich estimators for cluster-randomized trials with binary outcomes. Statistics in Medicine, 34, 281-96.
      Long, J.S. & Ervin, L.H. (2000) Using heteroscedasticity consistent standard errors in the linear regression model. American Statistician, 54, 217-224.
      MacKinnon, J.G. & White, H. (1985) Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties. Journal of Econometrics, 29, 305-325.
      Mann, H. & Whitney, D. (1947) On a test of whether one of two random variables is stochastically larger than the other. The Annals of Mathematical Statistics, 18, 50-60.
      Matsouaka, R. (2022) Robust statistical inference for matched win statistics. Statistical Methods in Medical Research, 31, 1423-1438.
      Molenberghs, G., Kenward, M., Verbeke, G. & Birhanu, T. (2011) Pseudo-likelihood estimation for incomplete data. Statistica Sinica, 21, 187-206.
      Molenberghs, G. & Verbeke, G. (2005) Models for discrete longitudinal data. New York: Springer.
      Noguchi, K., Gel, Y., Brunner, E. & Konietschke, F. (2012) nparld: an r software package for the nonparametric analysis of longitudinal data in factorial experiments. Statistical Software, 50, 1-23.
      Pocock, S., Ariti, C., Collier, T. & Wang, D. (2012) The win ratio: a new approach to the analysis of composite endpoints in clinical trials based on clinical priorities. European Heart Journal, 33, 176-182.
      Rubarth, K., Pauly, M. & Konietschke, F. (2022) Ranking procedures for repeated measures designs with missing data: estimation, testing and asymptotic theory. Statistical Methods in Medical Research, 31, 105-118.
      SAS Help Center (2020) The FREQ procedures. Available from: https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/procstat/procstat_freq_syntax03.htm [Accessed: 20 May 2021].
      Verbeeck, J., Deltuvaite-Thomas, V., Berckmoes, B., Burzykowski, T., Aerts, M., Thas, O., Buyse, M. & Molenberghs, G. (2021) Unbiasedness and efficiency of non-parametric and umvue estimators of the probabilistic index and related statistics. Statistical Methods in Medical Research, 30, 747-768.
      Verbeeck, J., Ozenne, B. & Anderson, W. (2020) Evaluation of inferential methods for the net benefit and win ratio statistics. Journal of Biopharmaceutical Statistics, 30(5), 765-782.
      Verbeeck, J., Spitzer, E., de Vries, T., van Es, G., Anderson, W., Van Mieghem, N., Leon, M., Molenberghs, G. & Tijssen, J. (2019) Generalized pairwise comparison methods to analyze (non)prioritized composite endpoints. Statistics in Medicine, 38, 5641-5656.
      Wally, V., Hovnanian, A., Ly, J., Buckova, H., Brunner, V., Lettner, T., Ablinger, M., Felder, T., Hofbauer, P., Wolkersdorfer, M., Lagler, F., Hitzl, W., Laimer, M., Kitzmüller, S., Diem, A. & Bauer, J. (2018) Diacerein orphan drug development for epidermolysis bullosa simplex: a phase 2/3 randomized, placebo-controlled, double-blind clinical trial. Journal of the American Academy of Dermatology, 78, 892-901.
      Wilson, E.B. (1927) Probable inference, the law of succession, and statistical inference. Journal of the American Statistical Association, 22, 209-212.
    • Grant Information:
      20102-F1901166-KZP WISS 2025 project 'IDA-Lab Salzburg'; 20204-WISS/225/197-2019 WISS 2025 project 'IDA-Lab Salzburg'; grant agreement no. 825575 European Joint Programme on Rare Diseases (EJP RD), EU Horizon 2020
    • Contributed Indexing:
      Keywords: Barnard test; GEE; cross-over; epidermolysis bullosa simplex; generalized pairwise comparison; model averaging; non-parametric marginal model; rare diseases; repeated measures
    • الموضوع:
      Date Created: 20230817 Date Completed: 20231221 Latest Revision: 20240103
    • الموضوع:
      20250114
    • الرقم المعرف:
      10.1111/biom.13920
    • الرقم المعرف:
      37587671