Item request has been placed!
×
Item request cannot be made.
×

Use of sisal industrial waste (Agave sisalana Perrine) in sustainable and multifunctional cosmetic products.
Item request has been placed!
×
Item request cannot be made.
×

- المؤلفون: Daher CC;Daher CC; Barreto SMAG; Barreto SMAG; de Brito Damasceno GA; de Brito Damasceno GA; de Brito Damasceno GA; de Santana Oliveira A; de Santana Oliveira A; Leite PIP; Leite PIP; Reginaldo FPS; Reginaldo FPS; Escudeiro CC; Escudeiro CC; Ostrosky EA; Ostrosky EA; Giordani RB; Giordani RB; Ferrari M; Ferrari M
- المصدر:
International journal of cosmetic science [Int J Cosmet Sci] 2023 Dec; Vol. 45 (6), pp. 815-833. Date of Electronic Publication: 2023 Nov 05.- نوع النشر :
Journal Article- اللغة:
English - المصدر:
- معلومة اضافية
- المصدر: Publisher: Blackwell Science Ltd Country of Publication: England NLM ID: 8007161 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1468-2494 (Electronic) Linking ISSN: 01425463 NLM ISO Abbreviation: Int J Cosmet Sci Subsets: MEDLINE
- بيانات النشر: Publication: 2000- : Oxford : Blackwell Science Ltd.
Original Publication: [Oxford, Blackwell Scientific Publications.] - الموضوع:
- نبذة مختصرة : Objective: Sisal is a common stiff fibre produced around the world, corresponding to approximately 70% of the commercial production of all fibres of this type. The fibres are extracted from the leaves of Agave sisalana, from which approximately 4% of their weight is obtained, with the remaining 96% considered to be residues from the process of the sisal industry. The objective of this work was to obtain a polyphenol-enriched extract from the A. sisalana residue by ultrasonically assisted extraction, characterize it chemically, evaluate in vitro antioxidant activity, and develop safe and stable photoprotective formulations for future application in cosmetic preparations.
Methods: Ultrasonic extraction of solid plant material was performed using 50% ethanol/water (v/v). The extract was chemically characterized by high-performance liquid chromatography equipment associated with classical molecular networking and evaluated for in vitro antioxidant activity by different methodologies. Ten formulations were prepared, varying the component concentrations and the shear time. The 1.0% sisal extract was incorporated into the most stable formulations, and preliminary and accelerated stability were evaluated. The emulsions were investigated for safety by assessment of primary accumulated dermal irritability and sensitization and a dermatological clinical study of phototoxicity and photosensitization. The photoprotective formulations containing or not containing the extract that were stable after 90 days had their in vivo sun protection factor (SPF), UVA protection factor, critical wavelength, and protection against visible and blue light determined.
Results: Ultrasound extraction using 50% ethanol/water (EH 50) as an extractor vehicle showed the best yield. The extract exhibited a concentration of phenolic compounds (77.93 mg of equivalent to the standard gallic acid/g) and showed in vitro antioxidant activity. Emulsions without and with 1.0% sisal extract remained stable and safe. The addition of the extract to the photoprotective formulation statistically increased the SPF when compared to the formulation without the extract and offered protection against UVA radiation, critical wavelengths, and absorption of visible and blue light.
Conclusion: Based on the findings, the solid residue of A. sisalana may be indicated as a component of photoprotective and antioxidant cosmetic formulations.
(© 2023 Society of Cosmetic Scientists and Societe Francaise de Cosmetologie.) - References: Flor J, Davolos MR, Correa MA. Protetores solares. Quím Nova. 2007;30:153-158.
Milito A, Castellano I, Damiani E. From sea to skin: is there a future for natural photoprotectants? Mar Drugs. 2021;19(7):379.
Jesus A, Sousa E, Cruz MT, Cidade H, Lobo JMS, Almeida IF. UV filters: challenges and prospects. Pharmaceuticals (Basel). 2022;15(3):263.
Jarzycka A, Lewinska A, Gancarz R, Wilk KA. Assessment of extracts of Helichrysum arenarium, Crataegus monogyna, Sambucus nigra in photoprotective UVA and UVB; photostability in cosmetic emulsions. J Photochem Photobiol B. 2013;128:50-57.
Serafini MR, Detoni CB, Menezes DP, Pereira Filho RN, Fortes VS, Vieira MJ, et al. UVA-UVB photoprotective activity of topical formulations containing Morinda citrifolia extract. Biomed Res Int. 2014;2014:587819. https://doi.org/10.1155/2014/587819.
Baldisserotto A, Buso P, Radice M, Dissette V, Lampronti I, Gambari R, et al. Moringa oleifera leaf extracts as multifunctional ingredients for “natural and organic” sunscreens and photoprotective preparations. Molecules. 2018;23(3):1-16.
Jenkins GI. Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol. 2009;60:407-431.
Napagoda MT, Nmalkanthi BMAS, Abayawardana SAK, Qader MM, Jayasinghe L. Photoprotective potential in some medicinal plants used to treat skin diseases in Sri Lanka. BMC Complement Altern Med. 2016;16(1):479.
Reuter J, Merfort I, Schempp CM. Botanicals in dermatology: an evidence-based review. Am Clin Dermatol. 2010;11(4):247-267.
Cretu GC, Morlock GE. Analysis of anthocyanins in powdered berry extracts by planar chromatography linked with bioassay and mass spectrometry. Food Chem. 2014;146:104-112.
Daher CC, Fontes I, Silva RRO, Damasceno GAB, Soares DS, Aragão CFS, et al. Development of O/W emulsions containing Euterpe oleracea extract and evaluation of photoprotective efficacy. Braz J Pharm Sci. 2014;50(3):639-652.
Fernandes AS, Mazzei JL, Oliveira CG, Evangelista H, Marquez MR, Ferraz ER, et al. Protection against UV-induced toxicity and lack of mutagenicity of Antarctic Sanionia uncinata. Toxicology. 2017;376:126-136.
Hong Y-H, Jung EY, Shin K-S, Kim TY, Yu K-W, Chang UJ, et al. Photoprotective effects of a formulation containing tannase-converted green tea extract against UVB-induced oxidative stress in hairless mice. Appl Biochem Biotechnol. 2012;166(1):165-175.
Hwang E, Park SY, Yin CS, Kim HT, Kim WM, Yi TH. Antiaging effects of the mixture of Panax ginseng and Crataegu spinnatifida in human dermal fibroblasts and healthy human skin. J Ginseng Res. 2017;41(1):69-77.
Kang J, Li Z, Wu T, Jensen GS, Schauss AG, Wu X. Antioxidant capacities of flavonoid compounds isolated from açai pulp (Euterpe oleracea Mart.). Food Chem. 2010;122(3):610-617.
Kim SH, Jung EY, Kang DH, Chang UJ, Hong Y-H, Suh HJ. Physical stability, antioxidative properties, and photoprotective effects of a functionalized formulation containing black garlic extract. J Photochem Photobiol B. 2012;117:104-110.
Lee KO, Kim SN, Kim YC. Anti-wrinkle effects of water extracts of teas in hairless mouse. Toxicol Res. 2014;30(4):283-289.
Lee H, Hong Y, Kwon SH, Park J. Anti-aging effects of Piper cambodianum P. Fourn. extract on normal human dermal fibroblast cells and a wound-healing model in mice. Clin Interv Aging. 2016;11:1017-1026.
Limtrakul P, Yodkeeree S, Thippraphan P, Punfa W, Srisomboon J. Anti-aging and tyrosinase inhibition effects of Cassia fistula flower butanolic extract. BMC Complement Altern Med. 2016;16(1):497.
Barreto SMAG, Maia MS, Benica AM, De Assis HRBS, Leite-Silva VR, Rocha-Filho PA, et al. Evaluation of in vitro and in vivo safety of the by-product of Agave sisalana as a new cosmetic raw material: development and clinical evaluation of a nanoemulsion to improve skin moisturizing. Ind Crop Prod. 2017;108:470-479.
Dunder JR, Luiz Ferreira A, Almeida ACA, De-Faria FM, Takayama C, Socca EAR, et al. Applications of the hexanic fraction of Agave sisalana Perrine ex Engelm (Asparagaceae): control of inflammation and pain screening. Mem Inst Oswaldo Cruz. 2013;108(3):263-271.
Wang Y, Li X, Sun H, Yi K, Zheng J, Zhang J, et al. Biotransformation of steroidal saponins in sisal (Agave sisalana Perrine) to tigogenin by a newly isolated strain from a Karst area of Guilin, China. Biotechnol Biotechnol Equip. 2014;28(6):1024-1033.
Sousa EO, Miranda CMBA, Nobre CB, Boligon AA, Athayde ML, Costa JGM. Phytochemical analysis, and antioxidant activities of Lantana camara and Lantana montevidensis extracts. Ind Crop Prod. 2015;70:7-15.
Domínguez M, Nieto A, Marin JC, Keck AS, Jeffery E, Céspedes CL. Antioxidant activities of extracts from Barkleyanthus salicifolius (Asteraceae) and Penstemon gentianoides (Scrophulariaceae). J Agric Food Chem. 2005;53(15):5889-5895.
Padilha CEA, Dantas PVF, Nogueira CDC, Leitão ALS, Nobrega Almeida HN, Souza D, et al. Enhancing the recovery and concentration of polyphenols from camu-camu (Myrciaria dubia H.B.K. McVaugh) by aqueous two-phase flotation and scale-up process. Sep Sci Technol. 2018;53(13):2126-2135.
Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, et al. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat Biotechnol. 2016;34(8):828-837.
Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem. 1999;269(2):337-341.
Brand-Williams W, Cuvelier ME, Berset CLWT. Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci Technol. 1995;28:25-30.
Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26(9-10):1231-1237.
Anton A. Colorimetric estimation of aluminum with pyrocatechol violet. Anal Chem. 1960;32(6):725-726.
Decker EA, Welch B. Role of ferritin as a lipid oxidation catalyst in muscle. J Agric Food Chem. 1990;38(3):674-677.
Ferrari M. Obtenção e aplicação de emulsões múltiplas contendo óleos de andiroba e copaíba. Ribeirão Preto. Dissertação [Faculdade de Ciências Farmacêuticas de Ribeirão Preto] - Universidade de São Paulo; 1998.
Ferrari M. Desenvolvimento e avaliação da eficácia fotoprotetora de emulsões múltiplas contendo metoxicinamato de etilexila e óleo de andiroba (Carapa guyanensis). Ribeirão Preto. Tese [Faculdade de Ciências Farmacêuticas de Ribeirão Preto] - Universidade de São Paulo; 2002.
ANVISA - Agência Nacional de Vigilância Sanitária (Brasil). Guia de estabilidade de produtos cosméticos. Brasília: Anvisa; 2004.
Prista LN, Alves AC, Morgado R. Tecnologia Farmacêutica. Vol 1. Lisboa, Portugal: Fundação Calouste Gulbenkian; 1995.
Ribeiro R, Barreto S, Ostrosky E, Rocha-Filho P, Veríssimo L, Ferrari M. Production and characterization of cosmetic Nanoemulsions containing Opuntiaficus-indica (L.) mill extract as moisturizing agent. Molecules. 2015;20(2):2492-2509.
Lima CG, Vilela AFG, Silva AAS, Piannovski AR, Silva KK, Carvalho VFM, et al. Desenvolvimento e avaliação da estabilidade física de emulsões O/A contendo óleo de babaçu (Orbignya oleifera). Rev Bras Farm. 2008;89(3):239-245.
Pianovski AR, Vilela AFG, Silva AAS, Lima CG, Silva KK, Carvalho VFM, et al. Desenvolvimento e avaliação da estabilidade de emulsões múltiplas O/A/O com óleo de pequi (Caryocar brasiliense). Rev Bras Farm. 2008;89(2):155-159.
Davis HM. Analysis of creams and lotions. In: Sensel AJ, editor. Newburger's manual of cosmetic analysis. Chapter 4. Washington: Association Official Analytical Chemists, EUA; 1977. p. 32.
Ferrari M, Rocha-Filho PA. Multiple emulsions containing amazon oil: açaí oil (Euterpe oleracea). Rev Bras Farmacogn. 2011;21(4):737-743.
Kligman AM, Wooding WM. A method for the measurement and evaluation of irritants of human skin. J Invest Dermatol. 1967;49:78-94.
Fisher AA. Ask the experts - “status cosmeticus” (cosmetic intolerance). Am J Contact Dermat. 1995;6:250-251.
ISO. Sun protection test methods: in vivo determination of the sun protection factor (SPF). ISO 24444:2019(E), Cosmetics, 2nd ed. On-line. Available from: https://www.iso.org/standard/72250.html Accessed 22 Jan 2022.
ISO. Sun protection test methods: in vivo determination of the sun protection factor (SPF). ISO 24444:2010, Cosmetics. On-line. Available from: https://www.iso.org/standard/46523.html Accessed 22 Jan 2022.
Schalka S, Addor FAS, Agelune CA, Pereira VMC. Sunscreen protection against visible light: a new proposal for evaluation. Surg Cosmet Dermatol. 2012;3(4):45-52.
Medina-Torres N, Ayora-Talavera T, Espinosa-Andrews H, Sánchez-Contreras H, Pacheco N. Ultrasound assisted extraction for the recovery of phenolic compounds from vegetable sources. Agronomy. 2017;7(3):47.
Andreo D. Jorge N Antioxidantes Naturais: Técnicas De Extração. Bol Centro de Pesqui Process Aliment. 2006;24(2):319-336.
Oroian M, Ursachi F, Dranca F. Ultrasound-assisted extraction of polyphenols from crude pollen. Antioxidants (Basel, Switzerland). 2020;9(4):322.
Zhang Y, Tang H, Zheng Y, Li P, Pan L. Optimization of ultrasound-assisted extraction of polyphenols from Ajuga ciliata Bunge and evaluation of antioxidant activities in vitro. Heliyon. 2019;5(10):e02733.
Galvan D'Alessandro L, Kriaa K, Nikov I, Dimitrov K. Ultrasound assisted extraction of polyphenols from black chokeberry. Sep Purif Technol. 2012;93:42-47.
Hou M, Hu W, Wang A, Xiu Z, Shi Y, Hao K, et al. Ultrasound-assisted extraction of Total flavonoids from Pteris cretica L.: process optimization, HPLC analysis, and evaluation of antioxidant activity. Antioxidants. 2019;8(10):425.
Gallo M, Conte E, Naviglio D. Analysis and comparison of the antioxidant component of Portulaca oleracea leaves obtained by different solid-liquid extraction techniques. Antioxidants. 2017;6:64.
Dunder JR, Luiz-Ferreira A, Almeida ACA, De-Faria FM, Takayama C, Socca EAR, et al. Applications of the hexanic fraction of Agave sisalana Perrine ex Engelm (Asparagaceae): control of inflammation and pains creening. Mem Inst Oswaldo Cruz. 2013;108(3):263-271.
Ade-Ajayi AF, Hammuel C, Ezeayanaso C, Ogabiela EE, Udiba UU, Anyim B, et al. Preliminary phytochemical and antimicrobial screening of Agave sisalana Perrine juice (waste). J Environ Chem Biol. 2011;3(7):180-183.
Santos JD, Vieira IJ, Braz-Filho R, Branco A. Chemicals from Agave sisalana biomass: isolation and identification. Int J Mol Sci. 2015;16(4):8761-8771.
Barba FJ, Alcántara C, Abdelkebir R, Bäuerl C, Pérez-Martínez G, Lorenzo JM, et al. Ultrasonically-assisted and conventional extraction from Erodium glaucophyllum roots using ethanol:water mixtures: phenolic characterization, antioxidant, and anti-inflammatory activities. Molecules. 2020;25(7):1759.
Queiroz MF, Sabry DA, Sassaki GL, Rocha H, Costa LS. Gallic acid-dextran conjugate: green synthesis of a novel antioxidant molecule. Antioxidants. 2019;8(10):478.
Kausar H, Ambrin G, Okla MK, Soufan W, Al-Ghamdi AA, Ahmad MA. Flux analysis of catechin biosynthesis pathways using nanosensor. Antioxidants. 2020;9(4):288.
Kim E, Hwang K, Lee J, Han SY, Kim EN, Park J, et al. Skin protective effect of epigallocatechin gallate. Int J Mol Sci. 2018;19(1):173.
Axiotis E, Petrakis EA, Halabalaki M, Mitakou S. Phytochemical profile and biological activity of endemic Sideritis sipylea Boiss in North Aegean Greek Islands. Molecules. 2020;25(9):2022.
Rusu ME, Fizeșan I, Pop A, Gheldiu AM, Mocan A, Crisan G, et al. Enhanced recovery of antioxidant compounds from hazelnut (Corylus avellana L.) involucre based on extraction optimization: phytochemical profile and biological activities. Antioxidants (Basel, Switzerland). 2019;8(10):460.
Barreto SMAG, Cadavid COM, Moura RAO, Silva GMM, Araújo SVF, Silva Filho JAAD, et al. In vitro and in vivo antioxidant activity of Agave sisalana agro-industrial residue. Biomolecules. 2020;10(10):1435.
Barbosa KBF, Costa NMB, de Alfenas R CG, De Paula SO, Minim VPR, Bressan J. Estresse oxidativo: conceito, implicações e fatores modulatórios. Rev Nutr. 2010;23(4):629-643.
Leonardi GR. Cosmetologia aplicada. São Paulo: Santa Isabel; 2008.
Perioli L, Pagano C, Mazzitelli S, Rossi C, Nastruzzi C. Rheological and functional characterization of new antiinflammatory delivery systems designed for buccal administration. Int J Pharm. 2008;356(1-2):19-28.
Gil ES. Controle físico-químico de qualidade de medicamentos. São Paulo: Pharmabooks; 2010.
Jafari SM, Assadpoora E, Heb Y, Bhandaric B. Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocoll. 2008;22(7):1191-1202.
Tomazelli LC, De Assis Ramos MA, Sauce R, Cândido TM, Sarruf FD, De Oliveira PC, et al. SPF enhancement provided by rutin in a multifunctional sunscreen. Int J Pharm. 2018;552(1-2):401-406.
Rosado C, Tokunaga VK, Sauce R, De Oliveira CA, Sarruf FD, Parise-Filho FDR, et al. Another reason for using caffeine in Dermocosmetics: sunscreen adjuvant. Front Physiol. 2019;10:519.
Batista CM, de Queiroz LM, Alves ÂVF, Reis ECA, Santos FA, Castro TN, et al. Photoprotection and skin irritation effect of hydrogels containing hydroalcoholic extract of red propolis: a natural pathway against skin cancer. Heliyon. 2022;8(2):e08893.
He H, Li A, Li S, Tang J, Li L, Xiong L. Natural components in sunscreens: topical formulations with sun protection factor (SPF). Biomed Pharmacother. 2021;134:1161.
Costa SCC, Damasceno PKF, Lima RGG, Botura MB, Branco CRC, Silva TRS, et al. Evaluation of antioxidant, photoprotective and antinociceptive activities of Marcetia macrophylla extract: potential for formulation of sunscreens. Braz J Biol. 2021;83:1-9.
Mejía-Giraldo JC, Gallardo C, Puertas-Mejía MA. Selected extracts from High Mountain plants as potential sunscreens with antioxidant capacity. Photochem Photobiol. 2022;98:211-219.
Herzog B, Osterwalder U. Simulation of sunscreen performance. Pure Appl Chem. 2015;87(9-10):937-951.
Bernstein EF, Sarkas HW, Boland P. Iron oxides in novel skin care formulations attenuate blue light for enhanced protection against skin damage. J Cosmet Dermatol. 2021;20(2):532-537.
Lawrence KP, Sarkany R, Acker S, Herzog B, Young AR. A new visible light absorbing organic filter offers superior protection against pigmentation by wavelengths at the UVR-visible boundary region. J Photochem Photobiol B. 2022;227:112372.
Gulcin İ. Antioxidants and antioxidant methods: an updated overview. Arch Toxicol. 2020;94(3):651-715.
Khan A, Bai H, Shu M, Chen M, Khan A, Bai Z. Antioxidative and antiphotoaging activities of neferine upon UV-A irradiation in human dermal fibroblasts. Biosci Rep. 2018;38(6):BSR20181414. - Contributed Indexing: Keywords: Agave sisalana; antioxidant; cosmetics; photoprotection; sisal
Local Abstract: [Publisher, French] Le sisal est une fibre rigide courante produite dans le monde entier, correspondant à environ 70 % de la production commerciale de toutes les fibres de ce type. Les fibres sont extraites des feuilles d’Agave sisalana dont environ 4 % du poids est obtenu, les 96 % restants étant considérés comme des résidus du procédé de l’industrie du sisal. L’objectif de ce projet était d’obtenir un extrait du résidu d’A. sisalana enrichi en polyphénols par extraction assistée par ultrasons (EAU), de le caractériser chimiquement, d’évaluer l’activité antioxydante in vitro et de développer des formulations photoprotectrices sûres et stables pour une application future dans des préparations cosmétiques. MÉTHODES: L’extraction ultrasonique de la matière végétale solide a été effectuée avec une solution à 50 % d’éthanol/eau (v/v). L’extrait a été chimiquement caractérisé avec un équipement de chromatographie en phase liquide à haute performance associé à un réseau moléculaire (RM) classique, puis évalué pour l’activité antioxydante in vitro par différentes méthodologies. Dix formulations ont été préparées en variant les concentrations des composants et le temps de cisaillement. L’extrait de sisal à 1,0 % a été incorporé dans les formulations les plus stables et la stabilité préliminaire et accélérée a été évaluée. La sécurité d’emploi des émulsions a été étudiée en évaluant l’irritabilité et la sensibilisation cutanées accumulées primaires et l’étude clinique dermatologique de la phototoxicité et de la photosensibilisation. Le facteur de protection solaire in vivo, le facteur de protection UVA, la longueur d’onde critique et la protection contre la lumière visible et bleue ont été déterminées pour les formulations photoprotectrices contenant ou non l’extrait qui étaient stables après 90 jours. RÉSULTATS: L’extraction par ultrasons utilisant une solution à 50 % d’éthanol/eau (EH 50) comme véhicule d’extraction a menée au meilleur rendement. L’extrait a présenté une concentration de composés phénoliques (77,93 mg d’EAG/g) et une activité antioxydante in vitro. Les émulsions sans et avec 1,0 % d’extrait de sisal sont restées stables et sans danger. L’ajout de l’extrait à la formulation photoprotectrice a statistiquement augmenté le SPF par rapport à la formulation sans extrait et a offert une protection contre les rayonnements UVA, la longueur d’onde critique et l’absorption de la lumière visible et bleue. [Publisher, French] D’après ces résultats, les résidus solides d’A. sisalana peuvent être indiqués comme composant des formulations cosmétiques photoprotectrices et antioxydantes. - الرقم المعرف: 0 (Industrial Waste)
0 (Antioxidants)
0 (Cosmetics)
0 (Plant Extracts)
3K9958V90M (Ethanol)
059QF0KO0R (Water) - الموضوع: Date Created: 20230811 Date Completed: 20231204 Latest Revision: 20231217
- الموضوع: 20250114
- الرقم المعرف: 10.1111/ics.12890
- الرقم المعرف: 37565318
- المصدر:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login

حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.