Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Competitive Redox Chemistries in Vanadium Niobium Oxide for Ultrafast and Durable Lithium Storage.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Springer Country of Publication: Germany NLM ID: 101727940 Publication Model: Electronic Cited Medium: Internet ISSN: 2150-5551 (Electronic) Linking ISSN: 21505551 NLM ISO Abbreviation: Nanomicro Lett Subsets: PubMed not MEDLINE
    • بيانات النشر:
      Publication: [Berlin] : Springer
      Original Publication: Fayetteville, Ark. : OAHOST
    • نبذة مختصرة :
      Niobium pentoxide (Nb 2 O 5 ) anodes have gained increasing attentions for high-power lithium-ion batteries owing to the outstanding rate capability and high safety. However, Nb 2 O 5 anode suffers poor cycle stability even after modified and the unrevealed mechanisms have restricted the practical applications. Herein, the over-reduction of Nb 5+ has been demonstrated to be the critical reason for the capacity loss for the first time. Besides, an effective competitive redox strategy has been developed to solve the rapid capacity decay of Nb 2 O 5 , which can be achieved by the incorporation of vanadium to form a new rutile VNbO 4 anode. The highly reversible V 3+ /V 2+ redox couple in VNbO 4 can effectively inhibit the over-reduction of Nb 5+ . Besides, the electron migration from V 3+ to Nb 5+ can greatly increase the intrinsic electronic conductivity for VNbO 4 . As a result, VNbO 4 anode delivers a high capacity of 206.1 mAh g -1 at 0.1 A g -1 , as well as remarkable cycle performance with a retention of 93.4% after 2000 cycles at 1.0 A g -1 . In addition, the assembled lithium-ion capacitor demonstrates a high energy density of 44 Wh kg -1 at 5.8 kW kg -1 . In summary, our work provides a new insight into the design of ultra-fast and durable anodes.
      (© 2023. Shanghai Jiao Tong University.)
    • References:
      Small. 2015 Mar 25;11(12):1470-7. (PMID: 25366170)
      ACS Nano. 2019 Sep 24;13(9):10776-10786. (PMID: 31432663)
      ACS Nano. 2015 Jul 28;9(7):7497-505. (PMID: 26095456)
      ACS Appl Mater Interfaces. 2019 Nov 27;11(47):44196-44203. (PMID: 31596071)
      ACS Appl Mater Interfaces. 2019 Jul 17;11(28):25254-25263. (PMID: 31276377)
      Sci Bull (Beijing). 2020 Jul 30;65(14):1154-1162. (PMID: 36659144)
      ACS Appl Mater Interfaces. 2021 Sep 15;13(36):42662-42669. (PMID: 34491729)
      Chem Soc Rev. 2020 Jun 21;49(12):3806-3833. (PMID: 32478786)
      J Am Chem Soc. 2017 May 24;139(20):7071-7081. (PMID: 28441872)
      Adv Mater. 2023 Feb;35(5):e2208573. (PMID: 36460018)
      ACS Nano. 2015 Nov 24;9(11):11200-8. (PMID: 26418509)
      ACS Appl Mater Interfaces. 2019 Feb 13;11(6):6089-6096. (PMID: 30714359)
      Nat Commun. 2021 Jan 4;12(1):39. (PMID: 33397916)
      ACS Appl Mater Interfaces. 2019 Sep 25;11(38):34948-34956. (PMID: 31475821)
      Angew Chem Int Ed Engl. 2020 Mar 16;59(12):4865-4868. (PMID: 31944508)
      ACS Appl Mater Interfaces. 2017 Sep 13;9(36):30608-30616. (PMID: 28841286)
      Adv Mater. 2020 Jun;32(22):e2001001. (PMID: 32309887)
    • Contributed Indexing:
      Keywords: Capacity decay; Lithium-ion capacitor; Niobium pentoxide; Over-reduction; Vanadium niobium oxide
    • الموضوع:
      Date Created: 20230810 Latest Revision: 20231121
    • الموضوع:
      20240829
    • الرقم المعرف:
      PMC10415248
    • الرقم المعرف:
      10.1007/s40820-023-01172-9
    • الرقم المعرف:
      37561290