Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Ultrafast inactivation of SARS-CoV-2 by 254-nm UV-C irradiation on porous and non-porous media of medical interest using an omnidirectional chamber.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      Covid-19 has spurred a renewed interest in decontamination techniques for air, objects and surfaces. Beginning in 2020, urgent effort was done to permit the reuse of UV-C for inactivating SARS-CoV-2. However, those studies diverged widely on the dose necessary to reach this goal; until today, the real value of the sensitivity of the virus to a 254-nm illumination is not known precisely. In this study, decontamination was performed in an original UV-C large decontamination chamber (UVCab, ON-LIGHT, France) delivering an omnidirectional irradiation with an average dose of 50 mJ/cm 2 in 60 s. Viral inactivation was checked by both cell culture and PCR test. SARS-CoV-2 was inactivated by UV-C light within 3 s on both porous (disposable gown) and non-porous (stainless steel and apron) surfaces. For the porous surface, an irradiation of 5 min was needed to achieve a completely negative PCR signal. The Z value estimating the sensitivity of SARS-CoV-2 to UV-C in the experimental conditions of our cabinet was shown to be > 0.5820 m 2 /J. These results illustrate the ability of this apparatus to inactivate rapidly and definitively high loads of SARS-CoV-2 deposited on porous or non-porous supports and opens new perspectives on material decontamination using UV-C.
      (© 2023. Springer Nature Limited.)
    • References:
      O’Sullivan, E. D. PPE guidance for covid-19: Be honest about resource shortages. BMJ 369, m1507 (2020). (PMID: 10.1136/bmj.m150732303504)
      Cohen, J. & Rodgers, Y. V. M. Contributing factors to personal protective equipment shortages during the COVID-19 pandemic. Prev. Med. 141, 106263 (2020). (PMID: 10.1016/j.ypmed.2020.106263330176017531934)
      Salido, R. A. et al. Handwashing and detergent treatment greatly reduce SARS-CoV-2 viral load on Halloween candy handled by COVID-19 patients. mSystems 5, e01074 (2020). (PMID: 10.1128/mSystems.01074-20331277397743156)
      Biasin, M. et al. UV-C irradiation is highly effective in inactivating SARS-CoV-2 replication. Sci. Rep. 11, 6260 (2021). (PMID: 10.1038/s41598-021-85425-w337375367973506)
      Leung, A. et al. In vitro inactivation of SARS-CoV-2 using gamma radiation. Appl. Biosaf. 25, 157–160 (2020). (PMID: 10.1177/1535676020934242360357589134622)
      Ibáñez-Cervantes, G. et al. Disinfection of N95 masks artificially contaminated with SARS-CoV-2 and ESKAPE bacteria using hydrogen peroxide plasma: Impact on the reutilization of disposable devices. Am. J. Infect. Control. 48, 1037–1041 (2020). (PMID: 10.1016/j.ajic.2020.06.216326454737336929)
      Ludwig-Begall, L. F. et al. The use of germicidal ultraviolet light, vaporized hydrogen peroxide and dry heat to decontaminate face masks and filtering respirators contaminated with a SARS-CoV-2 surrogate virus. J. Hosp. Infect. 106, 577–584 (2020). (PMID: 10.1016/j.jhin.2020.08.025328890297462546)
      Ogilvie, B. H. et al. Alcohol-free hand sanitizer and other quaternary ammonium disinfectants quickly and effectively inactivate SARS-CoV-2. J. Hosp. Infect. 108, 142–145 (2021). (PMID: 10.1016/j.jhin.2020.11.02333259880)
      Viscusi, D. J. et al. Evaluation of five decontamination methods for filtering facepiece respirators. Ann. Occup. Hyg. 53(8), 815–827 (2009). (PMID: 19805391)
      Cadnum, J. L. et al. A comparison of the efficacy of multiple ultraviolet light room decontamination devices in a radiology procedure room. Infect. Control Hosp. Epidemiol. 40(2), 158–163 (2019). (PMID: 10.1017/ice.2018.29630698135)
      Guettari, M., Gharbi, I. & Hamza, S. UVC disinfection robot. Environ. Sci. Pollut. Res. 28, 40394–40399 (2021). (PMID: 10.1007/s11356-020-11184-2)
      Storm, N. et al. Rapid and complete inactivation of SARS-CoV-2 by ultraviolet-C irradiation. Sci. Rep. 10, 22421 (2020). (PMID: 10.1038/s41598-020-79600-8333807277773738)
      Sabino, C. P. et al. UV-C (254 nm) lethal doses for SARS-CoV-2. Photodiagn. Photodyn. Ther. 32, 101995 (2020). (PMID: 10.1016/j.pdpdt.2020.101995)
      Ma, B. et al. UV inactivation of SARS-CoV-2 across the UVC spectrum: KrCl* excimer, mercury-vapor, and light-emitting-diode (LED) sources. Appl. Environ. Microbiol. 87, e0153221 (2021). (PMID: 10.1128/AEM.01532-2134495736)
      Heßling, M. et al. Ultraviolet irradiation doses for coronavirus inactivation—Review and analysis of coronavirus photoinactivation studies. GMS Hyg. Infect. Control. 15, 08 (2020).
      Reed, L. J. & Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol. 27, 493–497 (1938). (PMID: 10.1093/oxfordjournals.aje.a118408)
      Bellon, M. et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load kinetics in symptomatic children, adolescents, and adults. Clin. Infect. Dis. 73, e1384–e1386 (2021). (PMID: 10.1093/cid/ciab39633949655)
      Pujadas, E. et al. SARS-CoV-2 viral load predicts COVID-19 mortality. Lancet Respir. Med. 8, e70 (2020). (PMID: 10.1016/S2213-2600(20)30354-4327710817836878)
      Pfeifer, G. P. Formation and processing of UV photoproducts: Effects of DNA sequence and chromatin environment. Photochem. Photobiol. 65(2), 270–283 (1997). (PMID: 10.1111/j.1751-1097.1997.tb08560.x9066304)
      Beggs, C. B. & Avital, E. J. Upper-room ultraviolet air disinfection might help to reduce COVID-19 transmission in buildings: A feasibility study. PeerJ 8, e10196 (2020). (PMID: 10.7717/peerj.10196330831587566754)
      Martínez-Antón, J. C. et al. Determination of the characteristic inactivation fluence for SARS-CoV-2 under UV-C radiation considering light absorption in culture media. Sci. Rep. 11, 15293 (2021). (PMID: 10.1038/s41598-021-94648-w343159768316444)
      Woo, M. H. et al. Effects of relative humidity and spraying medium on UV decontamination of filters loaded with viral aerosols. Appl. Environ. Microbiol. 78, 5781–5787 (2012). (PMID: 10.1128/AEM.00465-12226851353406129)
      Paton, S. et al. Persistence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and viral RNA in relation to surface type and contamination concentration. Appl. Environ. Microbiol. 87, e0052621 (2021). (PMID: 10.1128/AEM.00526-2133962986)
      Gardner, D. W. M. & Shama, G. The kinetics of Bacillus subtilis spore inactivation on filter paper by u.v. light and u.v. light in combination with hydrogen peroxide. J. Appl. Microbiol. 84, 633–641 (1998). (PMID: 10.1046/j.1365-2672.1998.00391.x)
      Gardner, D. W. & Shama, G. Modeling UV-induced inactivation of microorganisms on surfaces. J. Food Prot. 63, 63–70 (2000). (PMID: 10.4315/0362-028X-63.1.6310643771)
      Fisher, E. M. & Shaffer, R. E. A method to determine the available UV-C dose for the decontamination of filtering facepiece respirators. J. Appl. Microbiol. 110, 287–295 (2011). (PMID: 10.1111/j.1365-2672.2010.04881.x210546999728109)
      Huber, T. et al. Principles and practice for SARS-CoV-2 decontamination of N95 masks with UV-C. Biophys. J. 120, 2927–2942 (2021). (PMID: 10.1016/j.bpj.2021.02.039336757667929787)
      Purschke, M. et al. Construction and validation of UV-C decontamination cabinets for filtering facepiece respirators. Appl. Opt. 59, 7585–7595 (2020). (PMID: 10.1364/AO.40160232902458)
      Hong, W. et al. Rapid determination of infectious SARS-CoV-2 in PCR-positive samples by SDS-PMA assisted RT-qPCR. Sci. Total Environ. 797, 149085 (2021). (PMID: 10.1016/j.scitotenv.2021.149085342936098285242)
      Ashdown, I. Modeling Spherical Irradiance for UV-C Air Disinfection. Consulted on the 28th of August 2022. https://www.allthingslighting.org/?s=spherical+irradiance (2022).
      Kowalski, W. Ultraviolet Germicidal Irradiation Handbook|SpringerLink. Consulted on the 28th of August 2022. https://doi.org/10.1007/978-3-642-01999-9 (2009).
      Olsen, M. et al. Mobile phones of paediatric hospital staff are never cleaned and commonly used in toilets with implications for healthcare nosocomial diseases. Sci. Rep. 11, 12999 (2021). (PMID: 10.1038/s41598-021-92360-3341552788217495)
    • الموضوع:
      Date Created: 20230804 Date Completed: 20230807 Latest Revision: 20231120
    • الموضوع:
      20231215
    • الرقم المعرف:
      PMC10403608
    • الرقم المعرف:
      10.1038/s41598-023-39439-1
    • الرقم المعرف:
      37542073