References: O’Sullivan, E. D. PPE guidance for covid-19: Be honest about resource shortages. BMJ 369, m1507 (2020). (PMID: 10.1136/bmj.m150732303504)
Cohen, J. & Rodgers, Y. V. M. Contributing factors to personal protective equipment shortages during the COVID-19 pandemic. Prev. Med. 141, 106263 (2020). (PMID: 10.1016/j.ypmed.2020.106263330176017531934)
Salido, R. A. et al. Handwashing and detergent treatment greatly reduce SARS-CoV-2 viral load on Halloween candy handled by COVID-19 patients. mSystems 5, e01074 (2020). (PMID: 10.1128/mSystems.01074-20331277397743156)
Biasin, M. et al. UV-C irradiation is highly effective in inactivating SARS-CoV-2 replication. Sci. Rep. 11, 6260 (2021). (PMID: 10.1038/s41598-021-85425-w337375367973506)
Leung, A. et al. In vitro inactivation of SARS-CoV-2 using gamma radiation. Appl. Biosaf. 25, 157–160 (2020). (PMID: 10.1177/1535676020934242360357589134622)
Ibáñez-Cervantes, G. et al. Disinfection of N95 masks artificially contaminated with SARS-CoV-2 and ESKAPE bacteria using hydrogen peroxide plasma: Impact on the reutilization of disposable devices. Am. J. Infect. Control. 48, 1037–1041 (2020). (PMID: 10.1016/j.ajic.2020.06.216326454737336929)
Ludwig-Begall, L. F. et al. The use of germicidal ultraviolet light, vaporized hydrogen peroxide and dry heat to decontaminate face masks and filtering respirators contaminated with a SARS-CoV-2 surrogate virus. J. Hosp. Infect. 106, 577–584 (2020). (PMID: 10.1016/j.jhin.2020.08.025328890297462546)
Ogilvie, B. H. et al. Alcohol-free hand sanitizer and other quaternary ammonium disinfectants quickly and effectively inactivate SARS-CoV-2. J. Hosp. Infect. 108, 142–145 (2021). (PMID: 10.1016/j.jhin.2020.11.02333259880)
Viscusi, D. J. et al. Evaluation of five decontamination methods for filtering facepiece respirators. Ann. Occup. Hyg. 53(8), 815–827 (2009). (PMID: 19805391)
Cadnum, J. L. et al. A comparison of the efficacy of multiple ultraviolet light room decontamination devices in a radiology procedure room. Infect. Control Hosp. Epidemiol. 40(2), 158–163 (2019). (PMID: 10.1017/ice.2018.29630698135)
Guettari, M., Gharbi, I. & Hamza, S. UVC disinfection robot. Environ. Sci. Pollut. Res. 28, 40394–40399 (2021). (PMID: 10.1007/s11356-020-11184-2)
Storm, N. et al. Rapid and complete inactivation of SARS-CoV-2 by ultraviolet-C irradiation. Sci. Rep. 10, 22421 (2020). (PMID: 10.1038/s41598-020-79600-8333807277773738)
Sabino, C. P. et al. UV-C (254 nm) lethal doses for SARS-CoV-2. Photodiagn. Photodyn. Ther. 32, 101995 (2020). (PMID: 10.1016/j.pdpdt.2020.101995)
Ma, B. et al. UV inactivation of SARS-CoV-2 across the UVC spectrum: KrCl* excimer, mercury-vapor, and light-emitting-diode (LED) sources. Appl. Environ. Microbiol. 87, e0153221 (2021). (PMID: 10.1128/AEM.01532-2134495736)
Heßling, M. et al. Ultraviolet irradiation doses for coronavirus inactivation—Review and analysis of coronavirus photoinactivation studies. GMS Hyg. Infect. Control. 15, 08 (2020).
Reed, L. J. & Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol. 27, 493–497 (1938). (PMID: 10.1093/oxfordjournals.aje.a118408)
Bellon, M. et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load kinetics in symptomatic children, adolescents, and adults. Clin. Infect. Dis. 73, e1384–e1386 (2021). (PMID: 10.1093/cid/ciab39633949655)
Pujadas, E. et al. SARS-CoV-2 viral load predicts COVID-19 mortality. Lancet Respir. Med. 8, e70 (2020). (PMID: 10.1016/S2213-2600(20)30354-4327710817836878)
Pfeifer, G. P. Formation and processing of UV photoproducts: Effects of DNA sequence and chromatin environment. Photochem. Photobiol. 65(2), 270–283 (1997). (PMID: 10.1111/j.1751-1097.1997.tb08560.x9066304)
Beggs, C. B. & Avital, E. J. Upper-room ultraviolet air disinfection might help to reduce COVID-19 transmission in buildings: A feasibility study. PeerJ 8, e10196 (2020). (PMID: 10.7717/peerj.10196330831587566754)
Martínez-Antón, J. C. et al. Determination of the characteristic inactivation fluence for SARS-CoV-2 under UV-C radiation considering light absorption in culture media. Sci. Rep. 11, 15293 (2021). (PMID: 10.1038/s41598-021-94648-w343159768316444)
Woo, M. H. et al. Effects of relative humidity and spraying medium on UV decontamination of filters loaded with viral aerosols. Appl. Environ. Microbiol. 78, 5781–5787 (2012). (PMID: 10.1128/AEM.00465-12226851353406129)
Paton, S. et al. Persistence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and viral RNA in relation to surface type and contamination concentration. Appl. Environ. Microbiol. 87, e0052621 (2021). (PMID: 10.1128/AEM.00526-2133962986)
Gardner, D. W. M. & Shama, G. The kinetics of Bacillus subtilis spore inactivation on filter paper by u.v. light and u.v. light in combination with hydrogen peroxide. J. Appl. Microbiol. 84, 633–641 (1998). (PMID: 10.1046/j.1365-2672.1998.00391.x)
Gardner, D. W. & Shama, G. Modeling UV-induced inactivation of microorganisms on surfaces. J. Food Prot. 63, 63–70 (2000). (PMID: 10.4315/0362-028X-63.1.6310643771)
Fisher, E. M. & Shaffer, R. E. A method to determine the available UV-C dose for the decontamination of filtering facepiece respirators. J. Appl. Microbiol. 110, 287–295 (2011). (PMID: 10.1111/j.1365-2672.2010.04881.x210546999728109)
Huber, T. et al. Principles and practice for SARS-CoV-2 decontamination of N95 masks with UV-C. Biophys. J. 120, 2927–2942 (2021). (PMID: 10.1016/j.bpj.2021.02.039336757667929787)
Purschke, M. et al. Construction and validation of UV-C decontamination cabinets for filtering facepiece respirators. Appl. Opt. 59, 7585–7595 (2020). (PMID: 10.1364/AO.40160232902458)
Hong, W. et al. Rapid determination of infectious SARS-CoV-2 in PCR-positive samples by SDS-PMA assisted RT-qPCR. Sci. Total Environ. 797, 149085 (2021). (PMID: 10.1016/j.scitotenv.2021.149085342936098285242)
Ashdown, I. Modeling Spherical Irradiance for UV-C Air Disinfection. Consulted on the 28th of August 2022. https://www.allthingslighting.org/?s=spherical+irradiance (2022).
Kowalski, W. Ultraviolet Germicidal Irradiation Handbook|SpringerLink. Consulted on the 28th of August 2022. https://doi.org/10.1007/978-3-642-01999-9 (2009).
Olsen, M. et al. Mobile phones of paediatric hospital staff are never cleaned and commonly used in toilets with implications for healthcare nosocomial diseases. Sci. Rep. 11, 12999 (2021). (PMID: 10.1038/s41598-021-92360-3341552788217495)
No Comments.