Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Novel metallo-β-lactamases inhibitors restore the susceptibility of carbapenems to New Delhi metallo-lactamase-1 (NDM-1)-harbouring bacteria.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- المؤلفون: Guo Y;Guo Y; Liu H; Liu H; Yang M; Yang M; Ding R; Ding R; Gao Y; Gao Y; Niu X; Niu X; Deng X; Deng X; Wang J; Wang J; Feng H; Feng H; Qiu J; Qiu J
- المصدر:
British journal of pharmacology [Br J Pharmacol] 2024 Jan; Vol. 181 (1), pp. 54-69. Date of Electronic Publication: 2023 Sep 06.- نوع النشر :
Journal Article; Research Support, Non-U.S. Gov't- اللغة:
English - المصدر:
- معلومة اضافية
- المصدر: Publisher: Wiley Country of Publication: England NLM ID: 7502536 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-5381 (Electronic) Linking ISSN: 00071188 NLM ISO Abbreviation: Br J Pharmacol Subsets: MEDLINE
- بيانات النشر: Publication: London : Wiley
Original Publication: London, Macmillian Journals Ltd. - الموضوع:
- نبذة مختصرة : Background and Purpose: The production of metallo-β-lactamases is a major mechanisms adopted by bacterial pathogens to resist carbapenems. Repurposing approved drugs to restore the efficacy of carbapenems represents an efficient and cost-effective approach to fight infections caused by carbapenem resistant pathogens.
Experimental Approach: The nitrocefin hydrolysis assay was employed to screen potential New Delhi metallo-lactamase-1 (NDM-1) inhibitors from a commercially available U.S. Food and Drug Administration (FDA) approved drug library. The mechanism of inhibition was clarified by metal restoration, inductively coupled plasma mass spectrometry (ICP-MS) and molecular dynamics simulation. The in vitro synergistic antibacterial effect of the identified inhibitors with meropenem was determined by the checkerboard minimum inhibitory concentration (MIC) assay, time-dependent killing assay and combined disc test. Three mouse infection models were used to further evaluate the in vivo therapeutic efficacy of combined therapy.
Key Results: Twelve FDA-approved compounds were initially screened to inhibit the ability of NDM-1 to hydrolyse nitrocefin. Among these compounds, dexrazoxane, embelin, candesartan cilexetil and nordihydroguaiaretic acid were demonstrated to inhibit all tested metallo-β-lactamases and showed an in vitro synergistic bactericidal effect with meropenem against metallo-β-lactamases-producing bacteria. Dexrazoxane, embelin and candesartan cilexetil are metal ion chelating agents, while the inhibition of NDM-1 by nordihydroguaiaretic acid involves its direct binding to the active region of NDM-1. Furthermore, these four drugs dramatically rescued the treatment efficacy of meropenem in three infection models.
Conclusions and Implications: Our observations indicated that dexrazoxane, embelin, candesartan cilexetil and nordihydroguaiaretic acid are promising carbapenem adjuvants against metallo-β-lactamases-positive carbapenem resistant bacterial pathogens.
(© 2023 British Pharmacological Society.) - References: Alexander, S. P., Christopoulos, A., Davenport, A. P., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Southan, C., Davies, J. A., Abbracchio, M. P., Alexander, W., Al-Hosaini, K., Bäck, M., Barnes, N. M., Bathgate, R., … Ye, R. D. (2021). THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein-coupled receptors. British Journal of Pharmacology, 178(S1), S27-S156. https://doi.org/10.1111/bph.15538.
Alexander, S. P. H., Roberts, R. E., Broughton, B. R. S., Sobey, C. G., George, C. H., Stanford, S. C., Cirino, G., Docherty, J. R., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y., MacEwan, D. J., Mangum, J., Wonnacott, S., & Ahluwalia, A. (2018). Goals and practicalities of immunoblotting and immunohistochemistry: A guide for submission to the British Journal of Pharmacology. British Journal of Pharmacology, 175, 407-411. https://doi.org/10.1111/bph.14112.
Antimicrobial Resistance C. (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet, 399, 629-655.
Bush, K., & Bradford, P. A. (2019). Interplay between β-lactamases and new β-lactamase inhibitors. Nature Reviews. Microbiology, 17, 295-306. https://doi.org/10.1038/s41579-019-0159-8.
Campanella, T. A., & Gallagher, J. C. (2020). A clinical review and critical evaluation of imipenem-relebactam: Evidence to date. Infection and Drug Resistance, 13, 4297-4308. https://doi.org/10.2147/IDR.S224228.
Castanheira, M., Deshpande, L. M., Mendes, R. E., Canton, R., Sader, H. S., & Jones, R. N. (2019). Variations in the occurrence of resistance phenotypes and carbapenemase genes among enterobacteriaceae isolates in 20 years of the SENTRY antimicrobial surveillance program. Open Forum Infectious Diseases, 6, S23-S33. https://doi.org/10.1093/ofid/ofy347.
Curtis, M. J., Alexander, S., Cirino, G., Docherty, J. R., George, C. H., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y., MacEwan, D. J., Sobey, C. G., Stanford, S. C., Teixeira, M. M., Wonnacott, S., & Ahluwalia, A. (2018). Experimental design and analysis and their reporting II: Updated and simplified guidance for authors and peer reviewers. British Journal of Pharmacology, 175, 987-993. https://doi.org/10.1111/bph.14153.
de Kraker, M. E., Stewardson, A. J., & Harbarth, S. (2016). Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Medicine, 13, e1002184. https://doi.org/10.1371/journal.pmed.1002184.
de Oliveira, D. M. P., Forde, B. M., Kidd, T. J., Harris, P. N. A., Schembri, M. A., Beatson, S. A., Paterson, D. L., & Walker, M. J. (2020). Antimicrobial resistance in ESKAPE pathogens. Clinical Microbiology Reviews, 33, cmr.00181-19. https://doi.org/10.1128/CMR.00181-19.
de Sousa Coelho, F., & Mainardi, J. L. (2021). The multiple benefits of second-generation β-lactamase inhibitors in treatment of multidrug-resistant bacteria. Infectious Diseases Now, 51, 510-517.
Giri, P., Patel, H., & Srinivas, N. R. (2019). Review of clinical pharmacokinetics of avibactam, a newly approved non-β lactam β-lactamase inhibitor drug, in combination use with ceftazidime. Drug Research (Stuttgart), 69, 245-255. https://doi.org/10.1055/a-0748-5548.
Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. (2020). https://www.aidsdatahub.org/resource/who-global-priority-list-antibiotic-resistant-bacteria.
Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4, 435-447. https://doi.org/10.1021/ct700301q.
Howard, J. C., Creighton, J., Ikram, R., & Werno, A. M. (2020). Comparison of the performance of three variations of the Carbapenem Inactivation Method (CIM, modified CIM [mCIM] and in-house method (iCIM)) for the detection of carbapenemase-producing Enterobacterales and non-fermenters. Journal of Global Antimicrobial Resistance, 21, 78-82. https://doi.org/10.1016/j.jgar.2020.03.021.
Isler, B., Harris, P., Stewart, A. G., & Paterson, D. L. (2021). An update on cefepime and its future role in combination with novel β-lactamase inhibitors for MDR Enterobacterales and Pseudomonas aeruginosa. The Journal of Antimicrobial Chemotherapy, 76, 550-560. https://doi.org/10.1093/jac/dkaa511.
King, A. M., Reid-Yu, S. A., Wang, W., King, D. T., de Pascale, G., Strynadka, N. C., Walsh, T. R., Coombes, B. K., & Wright, G. D. (2014). Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature, 510, 503-506. https://doi.org/10.1038/nature13445.
Kumar, N., Singh, V. A., Beniwal, V., & Pottathil, S. (2018). Modified Carba NP test: Simple and rapid method to differentiate KPC- and MBL-producing Klebsiella species. Journal of Clinical Laboratory Analysis, 32, e22448. https://doi.org/10.1002/jcla.22448.
Lee, H. J., Jin, H. M., Park, M. S., Park, W., Madsen, E. L., & Jeon, C. O. (2015). Recovery of plasmid pEMB1, whose toxin-antitoxin system stabilizes an ampicillin resistance-conferring β-lactamase gene in Escherichia coli, from natural environments. Applied and Environmental Microbiology, 81, 40-47. https://doi.org/10.1128/AEM.02691-14.
Lilley, E., Stanford, S. C., Kendall, D. E., Alexander, S. P. H., Cirino, G., Docherty, J. R., George, C. H., Insel, P. A., Izzo, A. A., Ji, Y., Panettieri, R. A., Sobey, C. G., Stefanska, B., Stephens, G., Teixeira, M., & Ahluwalia, A. (2020). ARRIVE 2.0 and the British Journal of Pharmacology: Updated guidance for 2020. British Journal of Pharmacology, 177, 3611-3616. https://doi.org/10.1111/bph.15178.
Liu, S., Zhang, J., Zhou, Y., Hu, N., Li, J., Wang, Y., Niu, X., Deng, X., & Wang, J. (2019). Pterostilbene restores carbapenem susceptibility in New Delhi metallo-β-lactamase-producing isolates by inhibiting the activity of New Delhi metallo-β-lactamases. British Journal of Pharmacology, 176, 4548-4557. https://doi.org/10.1111/bph.14818.
Livermore, D. M., Mushtaq, S., Warner, M., Vickers, A., & Woodford, N. (2017). In vitro activity of cefepime/zidebactam (WCK 5222) against gram-negative bacteria. The Journal of Antimicrobial Chemotherapy, 72, 1373-1385. https://doi.org/10.1093/jac/dkw593.
Lomovskaya, O., Sun, D., Rubio-Aparicio, D., Nelson, K., Tsivkovski, R., Griffith, D. C., & Dudley, M. N. (2017). Vaborbactam: Spectrum of β-lactamase inhibition and impact of resistance mechanisms on activity in Enterobacteriaceae. Antimicrobial Agents and Chemotherapy, 61, aac.01443-17. https://doi.org/10.1128/AAC.01443-17.
Mallalieu, N. L., Winter, E., Fettner, S., Patel, K., Zwanziger, E., Attley, G., Rodriguez, I., Kano, A., Salama, S. M., Bentley, D., & Geretti, A. M. (2020). Safety and pharmacokinetic characterization of nacubactam, a novel β-lactamase inhibitor, alone and in combination with meropenem, in healthy volunteers. Antimicrobial Agents and Chemotherapy, 64, aac.02229-19. https://doi.org/10.1128/AAC.02229-19.
McCarthy, M. W. (2020). Clinical pharmacokinetics and pharmacodynamics of imipenem-cilastatin/relebactam combination therapy. Clinical Pharmacokinetics, 59, 567-573. https://doi.org/10.1007/s40262-020-00865-3.
McKenna, M. (2013). Antibiotic resistance: The last resort. Nature, 499, 394-396. https://doi.org/10.1038/499394a.
Moya, B., Barcelo, I. M., Bhagwat, S., Patel, M., Bou, G., Papp-Wallace, K. M., Bonomo, R. A., & Oliver, A. (2017). WCK 5107 (zidebactam) and WCK 5153 are novel inhibitors of PBP2 showing potent “β-lactam enhancer” activity against Pseudomonas aeruginosa, including multidrug-resistant metallo-β-lactamase-producing high-risk clones. Antimicrobial Agents and Chemotherapy, 61, aac.02529-16. https://doi.org/10.1128/AAC.02529-16.
Nagulapalli Venkata, K. C., Ellebrecht, M., & Tripathi, S. K. (2021). Efforts towards the inhibitor design for New Delhi metallo-β-lactamase (NDM-1). European Journal of Medicinal Chemistry, 225, 113747. https://doi.org/10.1016/j.ejmech.2021.113747.
Ning, N. Z., Liu, X., Chen, F., Zhou, P., Hu, L., Huang, J., Li, Z., Huang, J., Li, T., & Wang, H. (2018). Embelin restores carbapenem efficacy against NDM-1-positive pathogens. Frontiers in Microbiology, 9, 71. https://doi.org/10.3389/fmicb.2018.00071.
Nordmann, P., & Poirel, L. (2019). Epidemiology and diagnostics of carbapenem resistance in gram-negative bacteria. Clinical Infectious Diseases, 69, S521-S528. https://doi.org/10.1093/cid/ciz824.
Pasteran, F., Gonzalez, L. J., Albornoz, E., Bahr, G., Vila, A. J., & Corso, A. (2016). Triton Hodge test: Improved protocol for modified Hodge test for enhanced detection of NDM and other carbapenemase producers. Journal of Clinical Microbiology, 54, 640-649. https://doi.org/10.1128/JCM.01298-15.
Patel, G., & Bonomo, R. A. (2013). “Stormy waters ahead”: Global emergence of carbapenemases. Frontiers in Microbiology, 4, 48.
Peralta, I., Marrassini, C., Filip, R., Alonso, M. R., & Anesini, C. (2018). Food preservation by Larrea divaricata extract: Participation of polyphenols. Food Science & Nutrition, 6, 1269-1275. https://doi.org/10.1002/fsn3.640.
Percie du Sert, N., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., Browne, W. J., Clark, A., Cuthill, I. C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S. T., Howells, D. W., Hurst, V., Karp, N. A., Lazic, S. E., Lidster, K., MacCallum, C. J., Macleod, M., … Würbel, H. (2020). Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biology, 18, e3000411. https://doi.org/10.1371/journal.pbio.3000411.
Peyclit, L., Baron, S. A., & Rolain, J. M. (2019). Drug repurposing to fight colistin and carbapenem-resistant bacteria. Frontiers in Cellular and Infection Microbiology, 9, 193. https://doi.org/10.3389/fcimb.2019.00193.
Popelová, O., Štěrba, M., Hašková, P., Šimůnek, T., Hroch, M., Gunčová, I., Nachtigal, P., Adamcová, M., Geršl, V., & Mazurová, Y. (2009). Dexrazoxane-afforded protection against chronic anthracycline cardiotoxicity in vivo: Effective rescue of cardiomyocytes from apoptotic cell death. British Journal of Cancer, 101, 792-802. https://doi.org/10.1038/sj.bjc.6605192.
Pushpakom, S., Iorio, F., Eyers, P. A., Escott, K. J., Hopper, S., Wells, A., Doig, A., Guilliams, T., Latimer, J., McNamee, C., Norris, A., Sanseau, P., Cavalla, D., & Pirmohamed, M. (2019). Drug repurposing: Progress, challenges and recommendations. Nature Reviews. Drug Discovery, 18, 41-58. https://doi.org/10.1038/nrd.2018.168.
Queenan, A. M., & Bush, K. (2007). Carbapenemases: The versatile β-lactamases. Clinical Microbiology Reviews, 20, 440-458. https://doi.org/10.1128/CMR.00001-07.
Robert, J. (2007). Preclinical assessment of anthracycline cardiotoxicity in laboratory animals: Predictiveness and pitfalls. Cell Biology and Toxicology, 23, 27-37. https://doi.org/10.1007/s10565-006-0142-9.
Sawhney, N., Patel, M. K., Schachter, M., & Hughes, A. D. (1997). Inhibition of proliferation by heparin and expression of p53 in cultured human vascular smooth muscle cells. Journal of Human Hypertension, 11, 611-614. https://doi.org/10.1038/sj.jhh.1000495.
Sheng, Z., Ge, S., Gao, M., Jian, R., Chen, X., Xu, X., Li, D., Zhang, K., & Chen, W. H. (2020). Synthesis and biological activity of embelin and its derivatives: An overview. Mini Reviews in Medicinal Chemistry, 20, 396-407. https://doi.org/10.2174/1389557519666191015202723.
Sychantha, D., Rotondo, C. M., Tehrani, K., Martin, N. I., & Wright, G. D. (2021). Aspergillomarasmine A inhibits metallo-β-lactamases by selectively sequestering Zn2+. The Journal of Biological Chemistry, 297, 100918. https://doi.org/10.1016/j.jbc.2021.100918.
Tooke, C. L., Hinchliffe, P., Bragginton, E. C., Colenso, C. K., Hirvonen, V. H. A., Takebayashi, Y., & Spencer, J. (2019). β-lactamases and β-lactamase inhibitors in the 21st century. Journal of Molecular Biology, 431, 3472-3500. https://doi.org/10.1016/j.jmb.2019.04.002.
van Duin, D., & Doi, Y. (2017). The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence, 8, 460-469. https://doi.org/10.1080/21505594.2016.1222343.
Wu, G., & Cheon, E. (2018). Meropenem-vaborbactam for the treatment of complicated urinary tract infections including acute pyelonephritis. Expert Opinion on Pharmacotherapy, 19, 1495-1502. https://doi.org/10.1080/14656566.2018.1512586.
Yong, D., Toleman, M. A., Giske, C. G., Cho, H. S., Sundman, K., Lee, K., & Walsh, T. R. (2009). Characterization of a new metallo-β-lactamase gene, bla (NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrobial Agents and Chemotherapy, 53, 5046-5054. https://doi.org/10.1128/AAC.00774-09.
Zequinao, T., Telles, J. P., Gasparetto, J., & Tuon, F. F. (2020). Carbapenem stewardship with ertapenem and antimicrobial resistance-a scoping review. Revista da Sociedade Brasileira de Medicina Tropical, 53, e20200413. https://doi.org/10.1590/0037-8682-0413-2020.
Zhanel, G. G., Lawrence, C. K., Adam, H., Schweizer, F., Zelenitsky, S., Zhanel, M., Lagacé-Wiens, P. R. S., Walkty, A., Denisuik, A., Golden, A., Gin, A. S., Hoban, D. J., Lynch, J. P. III, & Karlowsky, J. A. (2018). Imipenem-relebactam and meropenem-vaborbactam: Two novel carbapenem-β-lactamase inhibitor combinations. Drugs, 78, 65-98. https://doi.org/10.1007/s40265-017-0851-9.
Zhou, K., Yu, X., Zhou, Y., Song, J., Ji, Y., Shen, P., Rossen, J. W. A., & Xiao, Y. (2019). Detection of an In104-like integron carrying a blaIMP-34 gene in Enterobacter cloacae isolates co-producing IMP-34 and VIM-1. The Journal of Antimicrobial Chemotherapy, 74, 2812-2814. https://doi.org/10.1093/jac/dkz240.
Zhou, Y., Guo, Y., Wen, Z., Ci, X., Xia, L., Wang, Y., Deng, X., & Wang, J. (2020). Isoalantolactone enhances the antimicrobial activity of penicillin G against Staphylococcus aureus by inactivating β-lactamase during protein translation. Pathogens, 9, 161. https://doi.org/10.3390/pathogens9030161. - Grant Information: 2021YFD1801000 National Key Research and Development Program of China; 32172912 National Natural Science Foundation of China; 81861138046 National Natural Science Foundation of China; JLUXKJC2021QZ04 Interdisciplinary Integration and Innovation Project of JLU; Fundamental Research Funds for the Central Universities
- Contributed Indexing: Keywords: FDA-approved drug library; carbapenem-resistant gram-negative bacteria; carbapenems; drug repurposing; metallo-β-lactamase
- الرقم المعرف: 0 (Carbapenems)
FV9J3JU8B1 (Meropenem)
EWP54G0J8F (nitrocefin)
EC 3.5.2.6 (beta-lactamase NDM-1)
R85M2X0D68 (candesartan cilexetil)
SHC6U8F5ER (embelin)
0 (beta-Lactamase Inhibitors)
7BO8G1BYQU (Masoprocol)
048L81261F (Dexrazoxane)
0 (Anti-Bacterial Agents)
EC 3.5.2.6 (beta-Lactamases) - الموضوع: Date Created: 20230804 Date Completed: 20231206 Latest Revision: 20240306
- الموضوع: 20250114
- الرقم المعرف: 10.1111/bph.16210
- الرقم المعرف: 37539785
- المصدر:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login
حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.