Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Monitoring trace element concentrations with environmentally friendly biomonitors in Artvin, Turkey.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Konanç MU;Konanç MU;Konanç MU
  • المصدر:
    Environmental monitoring and assessment [Environ Monit Assess] 2023 Jul 27; Vol. 195 (8), pp. 1001. Date of Electronic Publication: 2023 Jul 27.
  • نوع النشر :
    Journal Article
  • اللغة:
    English
  • معلومة اضافية
    • المصدر:
      Publisher: Springer Country of Publication: Netherlands NLM ID: 8508350 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2959 (Electronic) Linking ISSN: 01676369 NLM ISO Abbreviation: Environ Monit Assess Subsets: MEDLINE
    • بيانات النشر:
      Publication: 1998- : Dordrecht : Springer
      Original Publication: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-
    • الموضوع:
    • نبذة مختصرة :
      Air pollution is the change in air composition that disrupts human health and environmental balance. Although natural and anthropogenic processes include crustal movements, photosynthesis, and plant and animal emissions, other sources of contamination also include industrial operations, transportation activities, household resources, and the chemical and metal industries. Thus, biomonitoring can be employed as a quick, affordable, and efficient method for estimating air pollution. In this study, some inorganic pollutants were detected using olive trees (Olea europaea L.) at eleven different points, depending on the traffic density in Artvin, Turkey. Trace element concentrations (Cr, Ti, Fe, Ni, Co, Cu, Zn, Pb, Al, and Mn) were measured in soil once a year and seasonally in plant samples with ICP-OES. Furthermore, basic component analyses total carbon (TC), total nitrogen (TN), total hydrogen (TH), and total sulfur (TS) were done with an elemental analyzer, total chlorophyll contents with a portable chlorophyll meter, and morphological and particle-based plant analyses with SEM-EDS. The pollution levels of these metals were calculated using the enrichment factor (EF) and geoaccumulation index (I geo ) parameters. Furthermore, the accuracy and validity tests of the analyses for trace metals were tested by applying certified reference materials (CRM) (ERM-CD281) for the plant samples and CRM (LGC-6187) for soil samples. Results indicated that soil trace element pollution distributions were ranked according to the following descending order: Fe (37,873.33 mg/kg) > Al (13,300 mg/kg) > Mn (1101.33 mg/kg) > Ti (353.5 mg/kg) > Zn (252.86 mg/kg) > Cu (87.77 mg/kg) > Cr (30.52 mg/kg) > Pb (19.65 mg/kg) > Ni (17.07 mg/kg) > Co (7.65 mg/kg). Moreover, air pollution from anthropogenic sources substantially increased average trace metal concentrations and sulfur emissions in autumn and winter. The average highest values of Fe (321.08 mg/kg) > Al (304.05 mg/kg) > Mn (32.75 mg/kg) > Zn (31.01 mg/kg) > Cu (17.92 mg/kg) > Ti (11.07 mg/kg) Cr (2.57 mg/kg) > Ni (17.07 mg/kg) were found in leaf samples taken from the roadside in autumn and winter. According to the EF and I geo values, the main polluting trace elements in the soil were Zn, Cu, and Pb, while in the plant, these were detected as Fe, Al, Ti, Cr, Ni, and Cu. Kruskal-Wallis and correlation analysis statistically supported this relationship among metals. Results show that olive leaves are an effective bioindicator for detecting urban air pollution.
      (© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
    • References:
      Ali, M. U., Liu, G., Yousaf, B., Ullah, H., Abbas, Q., & Munir, M. A. M. (2019). A systematic review on global pollution status of particulate matter-associated potential toxic elements and health perspectives in urban environment. Environmental Geochemistry and Health, 41, 1131–1162. (PMID: 10.1007/s10653-018-0203-z)
      Amusan, A. A., Bada, S. B., & Salami, A. T. (2003). Effect of traffic density on heavy metal content of soil and vegetation along roadsides in Osun state, Nigeria. West African Journal of Applied Ecology, 4(1).
      Antoniadis, V., Thalassinos, G., Levizou, E., Wang, J., Wang, S. L., Shaheen, S. M., & Rinklebe, J. (2022). Hazardous enrichment of toxic elements in soils and olives in the urban zone of Lavrio, Greece, a legacy, millennia-old silver/lead mining area and related health risk assessment. Journal of Hazardous Materials, 434, 128906. (PMID: 10.1016/j.jhazmat.2022.128906)
      Aschner, M. (2000). Manganese: Brain transport and emerging research needs. Environmental Health Perspectives, 108(suppl 3), 429–432. (PMID: 10.1289/ehp.00108s3429)
      Audebert, A., & Fofana, M. (2009). Rice yield gap due to iron toxicity in West Africa. Journal of Agronomy and Crop Science, 195(1), 66–76. (PMID: 10.1111/j.1439-037X.2008.00339.x)
      Bačkor, M., & Váczi, P. (2002). Copper tolerance in the lichen photobiont Trebouxia erici (Chlorophyta). Environmental and Experimental Botany, 48(1), 11–20. (PMID: 10.1016/S0098-8472(02)00004-7)
      Baldantoni, D., De Nicola, F., & Alfani, A. (2014). Air biomonitoring of heavy metals and polycyclic aromatic hydrocarbons near a cement plant. Atmospheric Pollution Research, 5(2), 262–269. (PMID: 10.5094/APR.2014.032)
      Bandowe, B. A. M., Nkansah, M. A., Leimer, S., Fischer, D., Lammel, G., & Han, Y. (2019). Chemical (C, N, S, black carbon, soot and char) and stable carbon isotope composition of street dusts from a major West African metropolis: Implications for source apportionment and exposure. Science of the Total Environment, 655, 1468–1478. (PMID: 10.1016/j.scitotenv.2018.11.089)
      Barceló, J. U. A. N., & Poschenrieder, C. (1990). Plant water relations as affected by heavy metal stress: A review. Journal of Plant Nutrition, 13(1), 1–37. (PMID: 10.1080/01904169009364057)
      Baycu, G., Tolunay, D., Özden, H., & Günebakan, S. (2006). Ecophysiological and seasonal variations in Cd, Pb, Zn, and Ni concentrations in the leaves of urban deciduous trees in Istanbul. Environmental Pollution, 143(3), 545–554. (PMID: 10.1016/j.envpol.2005.10.050)
      Bhuiyan, M. A., Parvez, L., Islam, M. A., Dampare, S. B., & Suzuki, S. (2010). Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. Journal of Hazardous Materials, 173(1–3), 384–392. (PMID: 10.1016/j.jhazmat.2009.08.085)
      Bingham, E., Cohrssen, B., & Powell, C. H. (2001). Toxicological issues related to metals: Neurotoxicology and radiation metals and metal compounds. Wiley-Interscience.
      Bondada, B. R., Tu, S., & Ma, L. Q. (2004). Absorption of foliar-applied arsenic by the arsenic hyperaccumulating fern (Pteris vittata L.). Science of the total environment, 332(1–3), 61–70.
      Bourennane, H., Douay, F., Sterckeman, T., Villanneau, E., Ciesielski, H., King, D., & Baize, D. (2010). Mapping of anthropogenic trace elements inputs in agricultural topsoil from Northern France using enrichment factors. Geoderma, 157(3–4), 165–174. (PMID: 10.1016/j.geoderma.2010.04.009)
      Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils 1. Agronomy Journal, 54(5), 464–465. (PMID: 10.2134/agronj1962.00021962005400050028x)
      Bradl, H. (Ed.). (2005). Heavy metals in the environment: origin, interaction and remediation. Elsevier.
      Brahmi, F., Mechri, B., Dabbou, S., Dhibi, M., & Hammami, M. (2012). The efficacy of phenolics compounds with different polarities as antioxidants from olive leaves depending on seasonal variations. Industrial Crops and Products, 38, 146–152. (PMID: 10.1016/j.indcrop.2012.01.023)
      Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691. (PMID: 10.1016/j.heliyon.2020.e04691)
      Brumsack, H. J. (2006). The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 232(2–4), 344–361. (PMID: 10.1016/j.palaeo.2005.05.011)
      Calanni, J., Berg, E., Wood, M., Mangis, D., Boyce, R., Weathers, W., & Sievering, H. (1999). Atmospheric nitrogen deposition at a conifer forest: Response of free amino acids in Engelmann spruce needles. Environmental Pollution, 105(1), 79–89. (PMID: 10.1016/S0269-7491(98)00202-4)
      Calvo, G., & Valero, A. (2022). Strategic mineral resources: Availability and future estimations for the renewable energy sector. Environmental Development, 41, 100640. (PMID: 10.1016/j.envdev.2021.100640)
      Chaney, R. L. (1989). Toxic element accumulation in soils and crops: Protecting soil fertility and agricultural food-chains. In Inorganic contaminants in the vadose zone (pp. 140–158). Springer Berlin Heidelberg.
      Chetia, J., Gogoi, N., Gogoi, R., & Yasmin, F. (2021). Impact of heavy metals on physiological health of lichens growing in differently polluted areas of central Assam, North East India. Plant Physiology Reports, 26, 210–219. (PMID: 10.1007/s40502-021-00575-3)
      CSB. (2021). Çevre ve İklim Değişikliği bakanlığı, Artvin ili 2021 yılı çevre durum raporu. Retrieved May 11, 2022, from https://webdosya.csb.gov.tr/db/ced/icerikler/artv-n_-cdr2021-20221104090217.pdf.
      Davis, J. A. (1984). Complexation of trace metals by adsorbed natural organic matter. Geochimica Et Cosmochimica Acta, 48(4), 679–691. (PMID: 10.1016/0016-7037(84)90095-4)
      Denkhaus, E., & Salnikow, K. (2002). Nickel essentiality, toxicity, and carcinogenicity. Critical Reviews in Oncology/hematology, 42(1), 35–56. (PMID: 10.1016/S1040-8428(01)00214-1)
      DesMarias, T. L., & Costa, M. (2019). Mechanisms of chromium-induced toxicity. Current Opinion in Toxicology, 14, 1–7. (PMID: 10.1016/j.cotox.2019.05.003)
      Fernandes, B. C. C., Mendes, K. F., Tornisielo, V. L., Teófilo, T. M. S., Takeshita, V., das Chagas, P. S. F., & Silva, D. V. (2021). Effect of pyrolysis temperature on eucalyptus wood residues biochar on availability and transport of hexazinone in soil. International Journal of Environmental Science and Technology, 1–16.
      Galal, T. M., & Shehata, H. S. (2015). Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecological Indicators, 48, 244–251. (PMID: 10.1016/j.ecolind.2014.08.013)
      Gebauer, G., & Schulze, E. D. (1991). Carbon and nitrogen isotope ratios in different compartments of a healthy and a declining Picea abies forest in the Fichtelgebirge, NE Bavaria. Oecologia, 87, 198–207. (PMID: 10.1007/BF00325257)
      Ghrefat, H. A., Abu-Rukah, Y., & Rosen, M. A. (2011). Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediments of Kafrain Dam, Jordan. Environmental Monitoring and Assessment, 178, 95–109. (PMID: 10.1007/s10661-010-1675-1)
      Graham, R. D., & Webb, M. J. (1991). Micronutrients and disease resistance and tolerance in plants. Micronutrients in Agriculture, 4, 329–370.
      Grande, F., & Tucci, P. (2016). Titanium dioxide nanoparticles: A risk for human health? Mini Reviews in Medicinal Chemistry, 16(9), 762–769. (PMID: 10.2174/1389557516666160321114341)
      Guarino, F., Improta, G., Triassi, M., Castiglione, S., & Cicatelli, A. (2021). Air quality biomonitoring through Olea europaea L.: The study case of “Land of pyres”. Chemosphere, 282, 131052.
      Hernandez, L., Probst, A., Probst, J. L., & Ulrich, E. (2003). Heavy metal distribution in some French forest soils: Evidence for atmospheric contamination. Science of the Total Environment, 312(1–3), 195–219. (PMID: 10.1016/S0048-9697(03)00223-7)
      Hrubý, M., Cígler, P., & Kuzel, S. (2002). Contribution to understanding the mechanism of titanium action in plant. Journal of Plant Nutrition, 25(3), 577–598. (PMID: 10.1081/PLN-120003383)
      Hu, B., Cui, R., Li, J., Wei, H., Zhao, J., Bai, F., & Ding, X. (2013). Occurrence and distribution of heavy metals in surface sediments of the Changhua River Estuary and adjacent shelf (Hainan Island). Marine Pollution Bulletin, 76(1–2), 400–405.
      Jung, M. C. (2008). Heavy metal concentrations in soils and factors affecting metal uptake by plants in the vicinity of a Korean Cu-W mine. Sensors, 8(4), 2413–2423. (PMID: 10.3390/s8042413)
      Kabata-Pendias, A. (2000). Trace elements in soils and plants. CRC Press. (PMID: 10.1201/9781420039900)
      Kadem, D. E. D., Rached, O., Krika, A., & Gheribi-Aoulmi, Z. (2004). Statistical analysis of vegetation incidence on contamination of soils by heavy metals (Pb, Ni and Zn) in the vicinity of an iron steel industrial plant in Algeria. Environmetrics, 15(5), 447–462. (PMID: 10.1002/env.673)
      Kara, M. (2020). Assessment of sources and pollution state of trace and toxic elements in street dust in a metropolitan city. Environmental Geochemistry and Health, 42, 3213–3229. (PMID: 10.1007/s10653-020-00560-z)
      KGM. (2021). 2021 Karayolları Trafik Hacim Haritaları https://www.kgm.gov.tr/Sayfalar/KGM/SiteTr/Trafik/TrafikHacimHaritasi.aspx.
      Kim, K. T., Eo, M. Y., Nguyen, T. T. H., & Kim, S. M. (2019). General review of titanium toxicity. International Journal of Implant Dentistry, 5(1), 1–12. (PMID: 10.1186/s40729-019-0162-x)
      Krewski, D., Yokel, R. A., Nieboer, E., Borchelt, D., Cohen, J., Harry, J., & Rondeau, V. (2007). Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. Journal of Toxicology and Environmental Health, Part B, 10(S1), 1–269.
      Leopold, K., Wörle, K., Schindl, R., Huber, L., Maier, M., & Schuster, M. (2017). Determination of traffic-related palladium in tunnel dust and roadside soil. Science of the Total Environment, 583, 169–175. (PMID: 10.1016/j.scitotenv.2017.01.048)
      Li, F. R., Kang, L. F., Gao, X. Q., Hua, W., Yang, F. W., & Hei, W. L. (2007). Traffic-related heavy metal accumulation in soils and plants in Northwest China. Soil & Sediment Contamination, 16(5), 473–484. (PMID: 10.1080/15320380701490168)
      MacFarlane, G. R., & Burchett, M. D. (2001). Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the Grey mangrove, Avicennia marina (Forsk.) Vierh. Marine pollution bulletin, 42(3), 233–240.
      Madejón, P., Marañón, T., & Murillo, J. M. (2006). Biomonitoring of trace elements in the leaves and fruits of wild olive and holm oak trees. Science of the Total Environment, 355(1–3), 187–203. (PMID: 10.1016/j.scitotenv.2005.02.028)
      Malkoc, S., Yazıcı, B., & Savas Koparal, A. (2010). Assessment of the levels of heavy metal pollution in roadside soils of Eskisehir. Turkey. Environmental Toxicology and Chemistry, 29(12), 2720–2725. (PMID: 10.1002/etc.354)
      Marschner, H. (Ed.). (2011). Marschner’s mineral nutrition of higher plants. Academic press.
      MGM. (2021). İllerimize Ait İstatiski Veriler. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=A&m=ARTVIN.
      Mingorance, M. D., Valdés, B., & Oliva, S. R. (2007). Strategies of heavy metal uptake by plants growing under industrial emissions. Environment International, 33(4), 514–520. (PMID: 10.1016/j.envint.2007.01.005)
      Monni, S., Uhlig, C., Hansen, E., & Magel, E. (2001). Ecophysiological responses of Empetrum nigrum to heavy metal pollution. Environmental Pollution, 112(2), 121–129. (PMID: 10.1016/S0269-7491(00)00125-1)
      Montoro-Leal, P., García-Mesa, J. C., Cordero, M. S., Guerrero, M. L., & Alonso, E. V. (2020). Magnetic dispersive solid phase extraction for simultaneous enrichment of cadmium and lead in environmental water samples. Microchemical Journal, 155, 104796. (PMID: 10.1016/j.microc.2020.104796)
      Muller, G. (1979). Schwermettalle in den sedimenten des Rheins-Veranderungen seit 1971. Umschau Wissensch Tech., 79, 778–783.
      Nriagu, J. O. (2019). Encyclopedia of environmental health. Elsevier. Second edition), Elsevier, Oxford (2019), 500–508. .
      Oliva, S. R., & Espinosa, A. F. (2007). Monitoring of heavy metals in topsoils, atmospheric particles and plant leaves to identify possible contamination sources. Microchemical Journal, 86(1), 131–139. (PMID: 10.1016/j.microc.2007.01.003)
      Onyango, D. A., Entila, F., Dida, M. M., Ismail, A. M., & Drame, K. N. (2018). Mechanistic understanding of iron toxicity tolerance in contrasting rice varieties from Africa: 1. Morpho-physiological and biochemical responses. Functional Plant Biology, 46(1), 93–105.
      Orak, N. H., & Ozdemir, O. (2021). The impacts of COVID-19 lockdown on PM10 and SO2 concentrations and association with human mobility across Turkey. Environmental Research, 197, 111018. (PMID: 10.1016/j.envres.2021.111018)
      Osuji, L. C., & Onojake, C. M. (2004). Trace heavy metals associated with crude oil: A case study of Ebocha-8 oil-spill-polluted site in Niger Delta. Nigeria. Chemistry & Biodiversity, 1(11), 1708–1715. (PMID: 10.1002/cbdv.200490129)
      Polizzi, S., Ferrara, M., Bugiani, M., Barbero, D., & Baccolo, T. (2007). Aluminium and iron air pollution near an iron casting and aluminium foundry in Turin district (Italy). Journal of Inorganic Biochemistry, 101(9), 1339–1343. (PMID: 10.1016/j.jinorgbio.2007.06.012)
      Rout, G. R., Samantaray, S., & Das, P. (2000). Effects of chromium and nickel on germination and growth in tolerant and non-tolerant populations of Echinochloa colona (L.) Link. Chemosphere, 40(8), 855–859.
      Salnikow, K., & Zhitkovich, A. (2008). Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: Nickel, arsenic, and chromium. Chemical Research in Toxicology, 21(1), 28–44. (PMID: 10.1021/tx700198a)
      Sawidis, T., Breuste, J., Mitrovic, M., Pavlovic, P., & Tsigaridas, K. (2011). Trees as bioindicator of heavy metal pollution in three European cities. Environmental Pollution, 159(12), 3560–3570. (PMID: 10.1016/j.envpol.2011.08.008)
      Schiff, K. C., & Weisberg, S. B. (1999). Iron as a reference element for determining trace metal enrichment in Southern California coastal shelf sediments. Marine Environmental Research, 48(2), 161–176. (PMID: 10.1016/S0141-1136(99)00033-1)
      Schulze, E. D., Gebauer, G., Ziegler, H., & Lange, O. L. (1991). Estimates of nitrogen fixation by trees on an aridity gradient in Namibia. Oecologia, 88, 451–455. (PMID: 10.1007/BF00317592)
      Shakya, K., Chettri, M. K., & Sawidis, T. (2008). Impact of heavy metals (copper, zinc, and lead) on the chlorophyll content of some mosses. Archives of Environmental Contamination and Toxicology, 54, 412–421. (PMID: 10.1007/s00244-007-9060-y)
      Singh, S., Maiti, S. K., & Raj, D. (2023). An approach to quantify heavy metals and their source apportionment in coal mine soil: A study through PMF model. Environmental Monitoring and Assessment, 195(2), 306. (PMID: 10.1007/s10661-023-10924-4)
      Skocaj, M., Filipic, M., Petkovic, J., & Novak, S. (2011). Titanium dioxide in our everyday life; is it safe? Radiology and Oncology, 45(4), 227–247. (PMID: 10.2478/v10019-011-0037-0)
      Sosa, D., Hilber, I., Buerge-Weirich, D., Faure, R., Escobar, A., & Bucheli, T. D. (2022). Heavy metals in soils of Mayabeque, Cuba: Multifaceted and hardly discernable contributions from pedogenic and anthropogenic sources. Environmental Monitoring and Assessment, 194(6), 441. (PMID: 10.1007/s10661-022-10097-6)
      Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu. Hawaii. Environmental Geology, 39, 611–627. (PMID: 10.1007/s002540050473)
      Stevenson, A., Hartemink, A. E., & Zhang, Y. (2023). Measuring sand content using sedimentation, spectroscopy, and laser diffraction. Geoderma, 429, 116268. (PMID: 10.1016/j.geoderma.2022.116268)
      Szczepaniak, K., & Biziuk, M. (2003). Aspects of the biomonitoring studies using mosses and lichens as indicators of metal pollution. Environmental Research, 93(3), 221–230. (PMID: 10.1016/S0013-9351(03)00141-5)
      Tomašević, M., Vukmirović, Z., Rajšić, S., Tasić, M., & Stevanović, B. (2005). Characterization of trace metal particles deposited on some deciduous tree leaves in an urban area. Chemosphere, 61(6), 753–760. (PMID: 10.1016/j.chemosphere.2005.03.077)
      TUİK. (2022). Adrese Dayalin Nufus Kayit SistemiSonucları.  https://data.tuik.gov.tr/Bulten/Index?p=Adrese-Dayali-Nufus-Kayit-Sistemi-Sonuclari-2022-49685.
      Turan, D., Kocahakimoglu, C., Kavcar, P., Gaygısız, H., Atatanir, L., Turgut, C., & Sofuoglu, S. C. (2011). The use of olive tree (Olea europaea L.) leaves as a bioindicator for environmental pollution in the Province of Aydın. Turkey. Environmental Science and Pollution Research, 18, 355–364. (PMID: 10.1007/s11356-010-0378-z)
      Ullah, R., & Khan, N. (2022). Xanthium strumarium L. an alien invasive species in Khyber Pakhtunkhwa (Pakistan): A tool for biomonitoring and environmental risk assessment of heavy metal pollutants. Arabian Journal for Science and Engineering, 47(1), 255–267.
      USDA. (1951). Soil survey manual. Agricultural handbook No. 18. Washington DC.
      US-EPA. (2007). Method 3051A (SW-846): Microwave assisted acid digestion of sediments, sludges, and oils, Revision 1. U.S. Environmental Protection Agency, Washington. https://www.epa.gov/sites/default/files/2015-12/documents/3051a.pdf . Accessed 29 March 2022.
      Vajpayee, P., Rai, U. N., Ali, M. B., Tripathi, R. D., Yadav, V., Sinha, S., & Singh, S. N. (2001). Chromium-induced physiologic changes in Vallisneria spiralis L. and its role in phytoremediation of tannery effluent. Bulletin of Environmental Contamination and toxicology, 67(2), 246.
      Varrica, D., Lo Medico, F., & Alaimo, M. G. (2022). Air quality assessment by the determination of trace elements in lichens (Xanthoria calcicola) in an industrial area (Sicily, Italy). International Journal of Environmental Research and Public Health, 19(15), 9746. (PMID: 10.3390/ijerph19159746)
      Vlasov, D. V., Kukushkina, O. V., Kosheleva, N. E., & Kasimov, N. S. (2022). Levels and factors of the accumulation of metals and metalloids in roadside soils, road dust, and their PM10 fraction in the Western okrug of Moscow. Eurasian Soil Science, 55(5), 556–572. (PMID: 10.1134/S1064229322050118)
      Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica Et Cosmochimica Acta, 59(7), 1217–1232. (PMID: 10.1016/0016-7037(95)00038-2)
      Winge, D. R., & Mehra, R. K. (1990). Host defenses against copper toxicity. International Review of Experimental Pathology, 31, 47–83. (PMID: 10.1016/B978-0-12-364931-7.50007-0)
      Xu, Y., Xiao, H., Guan, H., & Long, C. (2018). Monitoring atmospheric nitrogen pollution in Guiyang (SW China) by contrasting use of Cinnamomum Camphora leaves, branch bark and bark as biomonitors. Environmental Pollution, 233, 1037–1048. (PMID: 10.1016/j.envpol.2017.10.005)
    • Contributed Indexing:
      Keywords: Biomonitors; Pollution; Trace metals; Traffic emission
    • الرقم المعرف:
      0 (Trace Elements)
      2P299V784P (Lead)
      0 (Soil Pollutants)
      0 (Soil)
      0 (Metals, Heavy)
    • الموضوع:
      Date Created: 20230727 Date Completed: 20230728 Latest Revision: 20230810
    • الموضوع:
      20240628
    • الرقم المعرف:
      10.1007/s10661-023-11587-x
    • الرقم المعرف:
      37498404