Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Physical function in children and adolescents pre- and 1-year post-liver transplant.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- المؤلفون: Patterson C;Patterson C;Patterson C;Patterson C; So S; So S; So S; So S; Shipley K; Shipley K; Shivgulam ME; Shivgulam ME; Avitzur Y; Avitzur Y; Avitzur Y; Avitzur Y; Ng VL; Ng VL; Ng VL; Ng VL
- المصدر:
Pediatric transplantation [Pediatr Transplant] 2023 Sep; Vol. 27 (6), pp. e14573. Date of Electronic Publication: 2023 Jul 26.- نوع النشر :
Journal Article- اللغة:
English - المصدر:
- معلومة اضافية
- المصدر: Publisher: Munksgaard Country of Publication: Denmark NLM ID: 9802574 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1399-3046 (Electronic) Linking ISSN: 13973142 NLM ISO Abbreviation: Pediatr Transplant Subsets: MEDLINE
- بيانات النشر: Original Publication: Copenhagen ; Malden, MA : Munksgaard, c1997-
- الموضوع: Liver Transplantation*; Child ; Humans ; Male ; Adolescent ; Quality of Life ; Liver ; Obesity ; Overweight
- نبذة مختصرة : Background: Several studies describe poorer motor developmental motor outcomes post-liver transplant (LT) in younger children. Limited studies examine physical function in older children and adolescents pre- and post-LT.
Methods: Retrospective review of standard of care physical function outcome measures pre- and 1-year post-LT in children ≥6 years at LT. Measures include: 6-minute walk test (6MWT), grip strength, Bruininks-Oseretsky Test of Motor Proficiency-2 (BOT-2) components, Physical Activity Questionnaire (PAQ), and Paediatric Quality of Life Multidimensional Fatigue Scale. Association of medical variables with outcomes was explored.
Results: The study cohort included 23 (8 male, median (interquartile range) age 11.67 (8.25, 13.92) years at LT) participants. Top two primary diagnoses included biliary atresia (30.4%) and fulminant hepatic failure (21.7%). At 1-year post-LT, over one-third (36%) were overweight or obese. Compared with healthy norms, children had significantly lower pre-LT PAQ scores (p = .002), pre- and post-6MWT scores (p < .001) and post-LT BOT-2 strength and agility scores (p < .001). Pre-LT, lower balance scores were associated with abdominal distention/ascites (p = .009) and splenomegaly (p = .017). Lower pre-LT platelet count correlated with poorer balance (r = .532, p = .017) and lower strength and agility scores (r = .446, p = .043). Significant moderate inverse correlations were found between weight/body mass index z-scores and BOT-2 components. Post-LT children continue to demonstrate decreased levels of motor proficiency and functional capacity but report less fatigue and increased physical activity.
Conclusions: Older children and adolescents undergoing LT are at risk of decreased physical function, highlighting the need for pre- and post-LT rehabilitation to optimize long term outcomes.
(© 2023 Wiley Periodicals LLC.) - References: Kwong AJ, Ebel NH, Kim WR, et al. OPTN/SRTR 2020 Annual Data Report: liver. Am J Transplant. 2022;22(S2):204-309. doi:10.1111/ajt.16978.
Ng VL, Fecteau A, Shepherd R, et al. Outcomes of 5-year survivors of pediatric liver transplantation: report on 461 children from a North American Multicenter Registry. Pediatrics. 2008;122(6):e1128-e1135. doi:10.1542/peds.2008-1363.
Perito ER, Lustig RH, Rosenthal P. Metabolic syndrome components after pediatric liver transplantation: prevalence and the impact of obesity and immunosuppression. Am J Transplant. 2016;16(6):1909-1916. doi:10.1111/ajt.13714.
Dagher M, Ng VL, Carpenter A, et al. Overweight, central obesity, and cardiometabolic risk factors in pediatric liver transplantation. Pediatr Transplant. 2015;19(2):175-181. doi:10.1111/petr.12425.
He S, Le NA, Frediani JK, et al. Cardiometabolic risks vary by weight status in pediatric kidney and liver transplant recipients: a cross-sectional, single-center study in the USA. Pediatr Transplant. 2017;21(6):e12984. doi:10.1111/petr.12984.
Janssen I, LeBlanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7:40.
Feldman AG, Neighbors K, Mukherjee S, Rak M, Varni JW, Alonso EM. Impaired physical function following pediatric LT. Liver Transpl. 2016;22(4):495-504. doi:10.1002/lt.24406.
Patterson C, So S, Schneiderman JE, Stephens D, Stephens S. Physical activity and its correlates in children and adolescents post-liver transplant. Pediatr Transplant. 2016;20(2):227-234. doi:10.1111/petr.12662.
Vandekerckhove K, Coomans I, De Bruyne E, et al. Evaluation of exercise performance, cardiac function, and quality of life in children after liver transplantation. Transplantation. 2016;100(7):1525-1531. doi:10.1097/TP.0000000000001167.
Lui S, de Souza A, Sharma A, et al. Physical activity and its correlates in a pediatric solid-organ transplant population. Pediatr Transplant. 2020;24(5):e13745. doi:10.1111/petr.13745.
Wrotniak BH, Epstein LH, Dorn JM, Jones KE, Kondilis VA. The relationship between motor proficiency and physical activity in children. Pediatrics. 2006;118(6):e1758-e1765. doi:10.1542/peds.2006-0742.
Elisofon SA, Magee JC, Ng VL, et al. Society of pediatric liver transplantation: current registry status 2011-2018. Pediatr Transplant. 2020;24(1):e13605. doi:10.1111/petr.13605.
Bowring MG, Massie AB, Chu NM, et al. Projected 20- and 30-year outcomes for pediatric liver transplant recipients in the United States. J Pediatr Gastroenterol Nutr. 2020;70(3):356-363. doi:10.1097/MPG.0000000000002592.
Almaas R, Jensen U, Loennecken MC, et al. Impaired motor competence in children with transplanted liver. J Pediatr Gastroenterol Nutr. 2015;60(6):723-728. doi:10.1097/MPG.0000000000000757.
Rodijk LH, den Heijer AE, Hulscher JBF, et al. Long-term neurodevelopmental outcomes in children with biliary atresia. J Pediatr. 2020;217:118-124.e3. doi:10.1016/j.jpeds.2019.10.054.
Jain-Ghai S, Joffe AR, Bond GY, et al. Pre-school neurocognitive and functional outcomes after liver transplant in children with early onset urea cycle disorders, maple syrup urine disease, and propionic acidemia: an inception cohort matched-comparison study. JIMD Rep. 2020;52(1):43-54. doi:10.1002/jmd2.12095.
Thevenin DM, Baker A, Kato T, Tzakis A, Fernandez M, Dowling M. Neuodevelopmental outcomes for children transplanted under the age of 3 years. Transplant Proc. 2006;38(6):1692-1693. doi:10.1016/j.transproceed.2006.05.037.
Bartels B, de Groot JF, Terwee CB. The six-minute walk test in chronic pediatric conditions: a systematic review of measurement properties. Phys Ther. 2013;93(4):529-541. doi:10.2522/ptj.20120210.
ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166(1):111-117. doi:10.1164/ajrccm.166.1.at1102.
Carey EJ, Steidley DE, Aqel BA, et al. Six-minute walk distance predicts mortality in liver transplant candidates. Liver Transpl. 2010;16(12):1373-1378. doi:10.1002/lt.22167.
Yimlamai D, Freiberger DA, Gould A, Zhou J, Boyer D. Pretransplant six-minute walk test predicts peri- and post-operative outcomes after pediatric lung transplantation. Pediatr Transplant. 2013;17(1):34-40. doi:10.1111/petr.12010.
Geiger R, Strasak A, Treml B, et al. Six-minute walk test in children and adolescents. J Pediatr. 2007;150(4):395-399.e2. doi:10.1016/j.jpeds.2006.12.052.
Wind AE, Takken T, Helders PJM, Engelbert RHH. Is grip strength a predictor for total muscle strength in healthy children, adolescents, and young adults? Eur J Pediatr. 2010;169(3):281-287. doi:10.1007/s00431-009-1010-4.
Daphnee DK, John S, Vaidya A, Khakhar A, Bhuvaneshwari S, Ramamurthy A. Hand grip strength: a reliable, reproducible, cost-effective tool to assess the nutritional status and outcomes of cirrhotics awaiting liver transplant. Clin Nutr ESPEN. 2017;19:49-53. doi:10.1016/j.clnesp.2017.01.011.
Lurz E, Quammie C, Englesbe M, et al. Frailty in children with liver disease: a prospective multicenter study. J Pediatr. 2018;194:109-115.e4. doi:10.1016/j.jpeds.2017.10.066.
Ooi PH, Hager A, Mazurak VC, et al. Sarcopenia in chronic liver disease: impact on outcomes. Liver Transpl. 2019;25(9):1422-1438. doi:10.1002/lt.25591.
Bohannon RW, Wang YC, Bubela D, Gershon RC. Handgrip strength: a population-based study of norms and age trajectories for 3- to 17-year-Olds. Pediatr Phys Ther. 2017;29(2):118-123. doi:10.1097/PEP.0000000000000366.
Bruininks RH, Bruininks BD. BOT2 Bruininks-Oseretsky Test of Motor Proficiency. 2nd ed. AGS Publishing; 2005.
Griffiths A, Toovey R, Morgan PE, Spittle AJ. Psychometric properties of gross motor assessment tools for children: a systematic review. BMJ Open. 2018;8(10):e021734. doi:10.1136/bmjopen-2018-021734.
Varni JW, Burwinkle TM, Katz ER, Meeske K, Dickinson P. The PedsQL™ in pediatric cancer: reliability and validity of the pediatric quality of life inventory™ generic core scales, multidimensional fatigue scale, and cancer module. Cancer. 2002;94(7):2090-2106. doi:10.1002/cncr.10428.
Petersen I, Noelle J, Buchholz A, Kroencke S, Daseking M, Grabhorn E. Fatigue in pediatric liver transplant recipients and its impact on their quality of life. Pediatr Transplant. 2019;23(1):e13331. doi:10.1111/petr.13331.
Panepinto JA, Torres S, Bendo CB, et al. PedsQL™ multidimensional fatigue scale in sickle cell disease: feasibility, reliability, and validity: fatigue in sickle cell disease. Pediatr Blood Cancer. 2014;61(1):171-177. doi:10.1002/pbc.24776.
Kowalski KC, Crocker RE, Donen RM. The Physical Activity Questionnaire for Older Children (PAC-C) and Adolescents (PAQ-A) Manual. University of Saskatchewan; 2004.
Janz KF, Lutuchy EM, Wenthe P, Levy SM. Measuring activity in children and adolescents using self-report: PAQ-C and PAQ-A. Med Sci Sports Exerc. 2008;40(4):767-772. doi:10.1249/MSS.0b013e3181620ed1.
Voss C, Dean PH, Gardner RF, Duncombe SL, Harris KC. Validity and reliability of the Physical Activity Questionnaire for Children (PAQ-C) and Adolescents (PAQ-A) in individuals with congenital heart disease. PloS One. 2017;12(4):e0175806. doi:10.1371/journal.pone.0175806.
Voss C, Ogunleye AA, Sandercock GR. Physical Activity Questionnaire for children and adolescents: English norms and cut-off points: norms and cut-off points for PAQ-C/-A. Pediatr Int. 2013;55(4):498-507. doi:10.1111/ped.12092.
Rodeghiero F, Stasi R, Gernsheimer T, et al. Standardization of terminology, definitions and outcome criteria in immune thrombocytopenic purpura of adults and children: report from an international working group. Blood. 2009;113(11):2386-2393. doi:10.1182/blood-2008-07-162503.
Berkey CS, Colditz GA. Adiposity in adolescents: change in actual BMI works better than change in BMI z score for longitudinal studies. Ann Epidemiol. 2007;17(1):44-50. doi:10.1016/j.annepidem.2006.07.014.
Marmeleira J, Veiga G, Cansado H, Raimundo A. Relationship between motor proficiency and body composition in 6- to 10-year-old children: motor proficiency and body composition. J Paediatr Child Health. 2017;53(4):348-353. doi:10.1111/jpc.13446.
Cheng J, East P, Blanco E, et al. Obesity leads to declines in motor skills across childhood: children's motor skill and weight. Child Care Health Dev. 2016;42(3):343-350. doi:10.1111/cch.12336.
Haga M. The relationship between physical fitness and motor competence in children. Child Care Health Dev. 2008;34(3):329-334. doi:10.1111/j.1365-2214.2008.00814.x.
Rodijk LH, den Heijer AE, Hulscher JBF, Verkade HJ, de Kleine RHJ, Bruggink JLM. Neurodevelopmental outcomes in children with liver diseases: a systematic review. J Pediatr Gastroenterol Nutr. 2018;67(2):157-168. doi:10.1097/MPG.0000000000001981.
Patterson C, So S, Rogers A, Ng VL. Motor outcomes in young children pre-and one-year post-liver transplant. Pediatr Transplant. 2022;26(3):e14200. doi:10.1111/petr.14200.
Gold A, Rogers A, Cruchley E, et al. Assessment of school readiness in chronic cholestatic liver disease: a pilot study examining children with and without liver transplantation. Can J Gastroenterol Hepatol. 2017;2017:1-8. doi:10.1155/2017/9873945.
Mäenpää H, Tainio J, Jalanko H, Arokoski J, Jahnukainen T. Physical performance after pediatric solid organ transplantation. Pediatr Transplant. 2022;26(2):e14163. doi:10.1111/petr.14163.
Krasnoff JB, Mathias R, Rosenthal P, Painter PL. The comprehensive assessment of physical fitness in children following kidney and liver transplantation. Transplantation. 2006;82(2):211-217. doi:10.1097/01.tp.0000226160.40527.5f.
Mager DR, Hager A, Ooi PH, Siminoski K, Gilmour SM, Yap JYK. Persistence of sarcopenia after pediatric liver transplantation is associated with poorer growth and recurrent hospital admissions. J Parenter Enteral Nutr. 2019;43(2):271-280. doi:10.1002/jpen.1414.
Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16-31. doi:10.1093/ageing/afy169.
Woolfson JP, Perez M, Chavhan GB, et al. Sarcopenia in children with end-stage liver disease on the transplant waiting list. Liver Transpl. 2021;27(5):641-651. doi:10.1002/lt.25985.
Boster JM, Browne LP, Pan Z, Zhou W, Ehrlich PF, Sundaram SS. Higher mortality in pediatric liver transplant candidates with sarcopenia. Liver Transpl. 2021;27(6):808-817. doi:10.1002/lt.26027.
Bhanji RA, Takahashi N, Moynagh MR, et al. The evolution and impact of sarcopenia pre- and post-liver transplantation. Aliment Pharmacol Ther. 2019;49(6):807-813. doi:10.1111/apt.15161.
Cairney J, Hay JA, Faught BE, Léger L, Mathers B. Generalized self-efficacy and performance on the 20-metre shuttle run in children. Am J Hum Biol. 2008;20(2):132-138. doi:10.1002/ajhb.20690.
Sorensen LG, Neighbors K, Zhang S, et al. Neuropsychological functioning and health-related quality of life: Pediatric Acute Liver Failure Study Group results. J Pediatr Gastroenterol Nutr. 2015;60(1):75-83. doi:10.1097/MPG.0000000000000575.
Varni JW, Limbers CA, Sorensen LG, et al. PedsQL™ Cognitive Functioning Scale in pediatric liver transplant recipients: feasibility, reliability, and validity. Qual Life Res. 2011;20(6):913-921. doi:10.1007/s11136-010-9823-1.
Bos GJFJ, Lelieveld OTHM, Scheenstra R, Sauer PJJ, Geertzen JHB, Dijkstra PU. Physical activity and aerobic fitness in children after liver transplantation. Pediatr Transplant. 2019;23(5):e13465. doi:10.1111/petr.13465.
Wójcicki TR, McAuley E. II. Physical activity: measurement and behavioral patterns in children and youth: activity measurement and behavioral patterns. Monogr Soc Res Child Dev. 2014;79(4):7-24. doi:10.1111/mono.12128. - Contributed Indexing: Keywords: children; liver transplantation; motor skills; physical function
- الموضوع: Date Created: 20230726 Date Completed: 20230828 Latest Revision: 20230907
- الموضوع: 20230907
- الرقم المعرف: 10.1111/petr.14573
- الرقم المعرف: 37492021
- المصدر:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login
حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.