Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Modulation of the activation of endothelial nitric oxide synthase and nitrosative stress biomarkers by aspirin triggered lipoxins: A possible mechanism of action of aspirin in the antiphospholipid syndrome.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Wiley-Blackwell Country of Publication: Denmark NLM ID: 8912860 Publication Model: Print Cited Medium: Internet ISSN: 1600-0897 (Electronic) Linking ISSN: 10467408 NLM ISO Abbreviation: Am J Reprod Immunol Subsets: MEDLINE
    • بيانات النشر:
      Publication: Copenhagen : Wiley-Blackwell
      Original Publication: New York : Alan R. Liss, Inc., c1989-
    • الموضوع:
    • نبذة مختصرة :
      Problem: Antiphospholipid syndrome (APS) is characterized by the clinical manifestation of vascular thrombosis (VT) or pregnancy morbidity (PM) and antiphospholipid antibodies (aPL) that can modify the nitric oxide production. Low-dose aspirin is used in the prevention and treatment of diverse alterations of pregnancy. One of the mechanisms of action of aspirin is to induce the production of aspirin-triggered-lipoxins (ATL). The aim of this study was to evaluate the modulatory effect of ATL over the activation of endothelial nitric oxide synthase (eNOS) and nitrosative stress biomarkers induced by aPL.
      Methods: We used polyclonal IgG and sera from women with aPL and PM/VT or VT only, and from women with PM only and positive for non-criteria aPL (SN-OAPS). In these sera, biomarkers of nitrosative stress (nitrites and nitrotyrosine) were measured. The protein expression of nitrotyrosine and the phosphorylation of eNOS (at Ser1177) were estimated in human umbilical vein endothelial cells (HUVECs) stimulated with polyclonal IgG with or without ATL.
      Results: Women with SN-OAPS showed increased circulating levels of nitrites and nitrotyrosine. Likewise, polyclonal IgG from either SN-OAPS or VT patients stimulated nitrotyrosine expression in HUVECs. ATL decreased the nitrotyrosine expression induced by polyclonal IgG from the SN-OAPS group. ATL also recovered the reduced eNOS phosphorylation at Ser1177 in HUVECs stimulated with polyclonal IgG from women with PM/VT or SN-OAPS.
      Conclusions: Increased nitrosative stress present in serum of women with SN-OAPS is associated with IgG-mediated impaired endothelial NO synthesis in endothelial cells. ATL prevent these cellular changes.
      (© 2023 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.)
    • References:
      Alves JD, Grima B. Oxidative stress in systemic lupus erythematosus and antiphospholipid syndrome: a gateway to atherosclerosis. Curr Rheumatol Rep. 2003;5(5):383-390.
      Ames PR, Batuca JR, Ciampa A, Iannaccone L, Alves JD. Clinical relevance of nitric oxide metabolites and nitrative stress in thrombotic primary antiphospholipid syndrome. J Rheumatol. 2010;37(12):2523-2530. jrheum. 100494.
      Alves JD, Clapp BR, Stidwill R, et al. Human monoclonal IgG anticardiolipin antibodies induce nitric oxide synthase expression. Atherosclerosis. 2006;185(2):246-253.
      Miyakis S, Lockshin MD, Atsumi T, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006;4(2):295-306.
      Mackworth-Young C, Loizou S, Walport M. Primary antiphospholipid syndrome: features of patients with raised anticardiolipin antibodies and no other disorder. Ann Rheum Dis. 1989;48(5):362.
      Pons-Estel GJ, Andreoli L, Scanzi F, Cervera R, Tincani A. The antiphospholipid syndrome in patients with systemic lupus erythematosus. J Autoimmun. 2017;76:10-20.
      Asherson RA, Cervera R, de Groot PG, et al. Catastrophic antiphospholipid syndrome: international consensus statement on classification criteria and treatment guidelines. Lupus. 2003;12(7):530-534.
      Gomez-Puerta JA, Cervera R. Diagnosis and classification of the antiphospholipid syndrome. J Autoimmun. 2014;48-49:20-25.
      Andreoli L, Chighizola CB, Banzato A, Pons-Estel GJ, Ramire de Jesus G, Erkan D. Estimated frequency of antiphospholipid antibodies in patients with pregnancy morbidity, stroke, myocardial infarction, and deep vein thrombosis: a critical review of the literature. Arthritis Care Res (Hoboken). 2013;65(11):1869-1873.
      Alijotas-Reig J, Ferrer-Oliveras R, Ruffatti A, et al. The European Registry on Obstetric Antiphospholipid Syndrome (EUROAPS): a survey of 247 consecutive cases. Autoimmun Rev. 2015;14(5):387-395.
      Cervera R, Serrano R, Pons-Estel G, et al. Morbidity and mortality in the antiphospholipid syndrome during a 10-year period: a multicentre prospective study of 1000 patients. Ann Rheum Dis. 2015;74(6):1011-1018. annrheumdis-2013-204838.
      Esteve-Valverde E, Ferrer-Oliveras R, Alijotas-Reig J. Obstetric antiphospholipid syndrome. Revista Clínica Española (English Edition). 2016;216(3):135-145.
      Duarte-Garcia A, Pham MM, Crowson CS, et al. The epidemiology of antiphospholipid syndrome: a population-based study. Arthritis Rheumatol. 2019;71(9):1545-1552.
      Di Simone N, Luigi MP, Marco D, et al. Pregnancies complicated with antiphospholipid syndrome: the pathogenic mechanism of antiphospholipid antibodies: a review of the literature. Ann N Y Acad Sci. 2007;1108:505-514.
      Espinosa G, Cervera R. Antiphospholipid syndrome. Arthritis Res Ther. 2008;10(6):230.
      Ortona E, Capozzi A, Colasanti T, et al. Vimentin/cardiolipin complex as a new antigenic target of the antiphospholipid syndrome. Blood. 2010;116(16):2960-2967.
      Radway-Bright EL, Ravirajan CT, Isenberg DA. The prevalence of antibodies to anionic phospholipids in patients with the primary antiphospholipid syndrome, systemic lupus erythematosus and their relatives and spouses. Rheumatology (Oxford). 2000;39(4):427-431.
      Bertolaccini ML, Amengual O, Atsumi T, et al. ‘Non-criteria’ aPL tests: report of a task force and preconference workshop at the 13th International Congress on Antiphospholipid Antibodies, Galveston, TX, USA, April 2010. Lupus. 2011;20(2):191-205.
      Zohoury N, Bertolaccini ML, Rodriguez-Garcia JL, et al. Closing the serological gap in the antiphospholipid syndrome: the value of “Non-criteria” antiphospholipid antibodies. J Rheumatol. 2017;44(11):1597-1602.
      Zigon P, Podovsovnik A, Ambrozic A, et al. Added value of non-criteria antiphospholipid antibodies for antiphospholipid syndrome: lessons learned from year-long routine measurements. Clin Rheumatol. 2019;38(2):371-378.
      Misasi R, Longo A, Recalchi S, et al. Molecular mechanisms of “Antiphospholipid Antibodies” and their paradoxical role in the pathogenesis of “Seronegative APS”. Int J Mol Sci. 2020;21(21).
      Jara LJ, Medina G, Cruz-Cruz P, Olivares-Rivera J, Duarte-Salazar C, Saavedra MA. Non-criteria or seronegative obstetric antiphospholipid syndrome? Isr Med Assoc J. 2017;19(6):382-386.
      Conti F, Andreoli L, Crisafulli F, Mancuso S, Truglia S, Tektonidou MG. Does seronegative obstetric APS exist? “pro” and “cons”. Autoimmun Rev. 2019;18(12):102407.
      Del Papa N, Guidali L, Spatola L, et al. Relationship between anti-phospholipid and anti-endothelial cell antibodies III: beta 2 glycoprotein I mediates the antibody binding to endothelial membranes and induces the expression of adhesion molecules. Clin Exp Rheumatol. 1995;13(2):179-185.
      Di Simone N, Caliandro D, Castellani R, Ferrazzani S, De Carolis S, Caruso A. Low-molecular weight heparin restores in-vitro trophoblast invasiveness and differentiation in presence of immunoglobulin G fractions obtained from patients with antiphospholipid syndrome. Hum Reprod. 1999;14(2):489-495.
      D'Ippolito S, Di Simone N, Di Nicuolo F, Castellani R, Caruso A. Antiphospholipid antibodies: effects on trophoblast and endothelial cells. Am J Reprod Immunol. 2007;58(2):150-158.
      Ornoy A, Yacobi S, Matalon ST, et al. The effects of antiphospholipid antibodies obtained from women with SLE/APS and associated pregnancy loss on rat embryos and placental explants in culture. Lupus. 2003;12(7):573-578.
      Pierangeli SS, Harris EN. Probing antiphospholipid-mediated thrombosis: the interplay between anticardiolipin antibodies and endothelial cells. Lupus. 2003;12(7):539-545.
      Sorice M, Longo A, Capozzi A, et al. Anti-β2-glycoprotein I antibodies induce monocyte release of tumor necrosis factor α and tissue factor by signal transduction pathways involving lipid rafts. Arthritis Rheum. 2007;56(8):2687-2697.
      Schwartz N, Shoenfeld Y, Barzilai O, et al. Reduced placental growth and hCG secretion in vitro induced by antiphospholipid antibodies but not by anti-Ro or anti-La: studies on sera from women with SLE/PAPS. Lupus. 2007;16(2):110-120.
      Mulla MJ, Brosens JJ, Chamley LW, et al. Antiphospholipid antibodies induce a pro-inflammatory response in first trimester trophoblast via the TLR4/MyD88 pathway. Am J Reprod Immunol. 2009;62(2):96-111.
      Lood C, Tyden H, Gullstrand B, et al. Platelet activation and anti-phospholipid antibodies collaborate in the activation of the complement system on platelets in systemic lupus erythematosus. PLoS One. 2014;9(6):e99386.
      Mayer-Pickel K, Stern C, Eberhard K, Lang U, Cervar-Zivkovic M. Changes of platelet count throughout pregnancy in women with antiphospholipid syndrome. J Reprod Immunol. 2019;136:102612.
      Muller-Calleja N, Hollerbach A, Ritter S, et al. Tissue factor pathway inhibitor primes monocytes for antiphospholipid antibody-induced thrombosis. Blood. 2019;134(14):1119-1131.
      Alvarez AM, Mulla MJ, Chamley LW, Cadavid AP, Abrahams VM. Aspirin-triggered lipoxin prevents antiphospholipid antibody effects on human trophoblast migration and endothelial cell interactions. Arthritis Rheumatol. 2015;67(2):488-497.
      Alvarez AM, Balcazar N, San Martin S, Markert UR, Cadavid AP. Modulation of antiphospholipid antibodies-induced trophoblast damage by different drugs used to prevent pregnancy morbidity associated with antiphospholipid syndrome. Am J Reprod Immunol. 2017;77(4):e12634.
      Velásquez M, Álvarez ÁM, Cadavid ÁP. Cuantificación sistematizada de la remodelación vascular in vitro en la morbilidad gestacional asociada al síndrome antifosfolípido. Revista Chilena de Obstetricia y Ginecología. 2016;81(6):455-464.
      Tektonidou MG, Andreoli L, Limper M, et al. EULAR recommendations for the management of antiphospholipid syndrome in adults. Ann Rheum Dis. 2019;78(10):1296-1304.
      Sammaritano LR, Bermas BL, Chakravarty EE, et al. 2020 American college of rheumatology guideline for the management of reproductive health in rheumatic and musculoskeletal diseases. Arthritis Rheumatol. 2020;72(4):529-556.
      Schrör K. Acetylsalicylic acid. John Wiley & Sons; 2016.
      Cadavid AP. Aspirin: the mechanism of action revisited in the context of pregnancy complications. Front Immunol. 2017;8:261.
      Claria J, Serhan CN. Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions. Proc Natl Acad Sci U S A. 1995;92(21):9475-9479.
      Paul-Clark MJ, Van Cao T, Moradi-Bidhendi N, Cooper D, Gilroy DW. 15-epi-lipoxin A4-mediated induction of nitric oxide explains how aspirin inhibits acute inflammation. J Exp Med. 2004;200(1):69-78.
      Taubert D, Berkels R, Grosser N, Schroder H, Grundemann D, Schomig E. Aspirin induces nitric oxide release from vascular endothelium: a novel mechanism of action. Br J Pharmacol. 2004;143(1):159-165.
      Gilroy DW. The role of aspirin-triggered lipoxins in the mechanism of action of aspirin. Prostaglandins Leukot Essent Fatty Acids. 2005;73(3-4):203-210.
      Nascimento-Silva V, Arruda MA, Barja-Fidalgo C, Villela CG, Fierro IM. Novel lipid mediator aspirin-triggered lipoxin A4 induces heme oxygenase-1 in endothelial cells. Am J Physiol Cell Physiol. 2005;289(3):C557-63.
      Schroder H. New signaling routes for an old drug: lipoxin A4 might mediate heme oxygenase-1 induction by aspirin. Focus on “Novel lipid mediator aspirin-triggered lipoxin A4 induces heme oxygenase-1 in endothelial cells”. Am J Physiol Cell Physiol. 2005;289(3):C507-8.
      Meroni PL, Borghi MO, Grossi C, Chighizola CB, Durigutto P, Tedesco F. Obstetric and vascular antiphospholipid syndrome: same antibodies but different diseases? Nat Rev Rheumatol. 2018;14(7):433-440.
      Ripoll VM, Pregnolato F, Mazza S, et al. Gene expression profiling identifies distinct molecular signatures in thrombotic and obstetric antiphospholipid syndrome. J Autoimmun. 2018;93:114-123.
      Alvarez AM, Gomez-Gutierrez AM, Bueno-Sanchez JC, Rua-Molina C, Cadavid AP. Obstetric antiphospholipid syndrome: an approach from glycans of the immunoglobulin G. J Hum Reprod Sci. 2021;14(1):97-100.
      Pengo V, Tripodi A, Reber G, et al. Update of the guidelines for lupus anticoagulant detection. Subcommittee on Lupus Anticoagulant/Antiphospholipid Antibody of the Scientific and Standardisation Committee of the International Society on Thrombosis and Haemostasis. J Thromb Haemost. 2009;7(10):1737-1740.
      Kwak JY, Gilman-Sachs A, Beaman KD, Beer AE. Autoantibodies in women with primary recurrent spontaneous abortion of unknown etiology. J Reprod Immunol. 1992;22(1):15-31.
      Rodríguez CM, Velásquez-Berrío M, Rúa C, et al. Antiphospholipid antibodies from women with pregnancy morbidity and vascular thrombosis induce endothelial mitochondrial dysfunction, mTOR activation, and autophagy. Front Physiol. 2021;12:706743.
      Serafini M, Maiani G, Ferro-Luzzi A. Alcohol-free red wine enhances plasma antioxidant capacity in humans. J Nutr. 1998;128(6):1003-1007.
      Gil-Villa AM, Alvarez AM, Velasquez-Berrio M, Rojas-Lopez M, Cadavid JA. Role of aspirin-triggered lipoxin A4, aspirin, and salicylic acid in the modulation of the oxidative and inflammatory responses induced by plasma from women with pre-eclampsia. Am J Reprod Immunol. 2020;83(2):e13207.
      Jaffe EA, Nachman RL, Becker CG, Minick CR. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973;52(11):2745-2756.
      Weber M, Knoefler I, Schleussner E, Markert UR, Fitzgerald JS. HTR8/SVneo cells display trophoblast progenitor cell-like characteristics indicative of self-renewal, repopulation activity, and expression of “stemness-” associated transcription factors. Biomed Res Int. 2013;2013:243649.
      Radi R, Peluffo G, Alvarez MN, Naviliat M, Cayota A. Unraveling peroxynitrite formation in biological systems. Free Radic Biol Med. 2001;30(5):463-488.
      Mineo C. Inhibition of nitric oxide and antiphospholipid antibody-mediated thrombosis. Curr Rheumatol Rep. 2013;15(5):324.
      Zeng G, Quon MJ. Insulin-stimulated production of nitric oxide is inhibited by wortmannin. Direct measurement in vascular endothelial cells. J Clin Invest. 1996;98(4):894-898.
      Delgado Alves J, Mason LJ, Ames PR, et al. Antiphospholipid antibodies are associated with enhanced oxidative stress, decreased plasma nitric oxide and paraoxonase activity in an experimental mouse model. Rheumatology (Oxford). 2005;44(10):1238-1244.
      Simoncini S, Sapet C, Camoin-Jau L, et al. Role of reactive oxygen species and p38 MAPK in the induction of the pro-adhesive endothelial state mediated by IgG from patients with anti-phospholipid syndrome. Int Immunol. 2005;17(4):489-500.
      Benhamou Y, Miranda S, Armengol G, et al. Infliximab improves endothelial dysfunction in a mouse model of antiphospholipid syndrome: role of reduced oxidative stress. Vascul Pharmacol. 2015;71:93-101.
      Lai ZW, Marchena-Mendez I, Perl A. Oxidative stress and Treg depletion in lupus patients with anti-phospholipid syndrome. Clin Immunol. 2015;158(2):148-152.
      Prinz N, Clemens N, Canisius A, Lackner KJ. Endosomal NADPH-oxidase is critical for induction of the tissue factor gene in monocytes and endothelial cells. Lessons from the antiphospholipid syndrome. Thromb Haemost. 2013;109(3):525-531.
      Ramesh S, Morrell CN, Tarango C, et al. Antiphospholipid antibodies promote leukocyte-endothelial cell adhesion and thrombosis in mice by antagonizing eNOS via beta2GPI and apoER2. J Clin Invest. 2011;121(1):120-131.
      Sacharidou A, Chambliss KL, Ulrich V, et al. Antiphospholipid antibodies induce thrombosis by PP2A activation via apoER2-Dab2-SHC1 complex formation in endothelium. Blood. 2018;131(19):2097-2110.
      Mineo C, Shaul PW. New insights into the molecular basis of the antiphospholipid syndrome. Drug Discov Today Dis Mech. 2011;8(1-2):e47-e52.
      Velasquez M, Granada MA, Galvis JC, Alvarez AM, Cadavid A. Oxidative stress in endothelial cells induced by the serum of women with different clinical manifestations of the antiphospholipid syndrome. Biomedica. 2019;39(4):673-688.
      Li H, Forstermann U. Prevention of atherosclerosis by interference with the vascular nitric oxide system. Curr Pharm Des. 2009;15(27):3133-3145.
      Karbach S, Wenzel P, Waisman A, Munzel T, Daiber A. eNOS uncoupling in cardiovascular diseases-the role of oxidative stress and inflammation. Curr Pharm Des. 2014;20(22):3579-3594.
      Alluri RK, Wu M, Kundu S, McCrae KR. Anti-ß2GPI antibodies induce oxidative and nitrative stress in endothelial cells through activation of discrete nox isoforms and eNOS uncoupling. Blood. 2016;128(22):720.
      Luczak A, Madej M, Kasprzyk A, Doroszko A. Role of the eNOS uncoupling and the nitric oxide metabolic pathway in the pathogenesis of autoimmune rheumatic diseases. Oxid Med Cell Longev. 2020;2020:1417981.
      Forstermann U, Munzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation. 2006;113(13):1708-1714.
      Villalba N, Sackheim AM, Nunez IA, et al. Traumatic brain injury causes endothelial dysfunction in the systemic microcirculation through arginase-1-dependent uncoupling of endothelial nitric oxide synthase. J Neurotrauma. 2017;34(1):192-203.
      Grandvuillemin I, Buffat C, Boubred F, et al. Arginase upregulation and eNOS uncoupling contribute to impaired endothelium-dependent vasodilation in a rat model of intrauterine growth restriction. Am J Physiol Regul Integr Comp Physiol. 2018;315(3):R509-R20.
      Laursen JB, Somers M, Kurz S, et al. Endothelial regulation of vasomotion in apoE-deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation. 2001;103(9):1282-1288.
      Chen CA, Wang TY, Varadharaj S, et al. S-glutathionylation uncouples eNOS and regulates its cellular and vascular function. Nature. 2010;468(7327):1115-1118.
      Li Q, Youn JY, Cai H. Mechanisms and consequences of endothelial nitric oxide synthase dysfunction in hypertension. J Hypertens. 2015;33(6):1128-1136.
      Vega-Ostertag M, Casper K, Swerlick R, Ferrara D, Harris EN, Pierangeli SS. Involvement of p38 MAPK in the up-regulation of tissue factor on endothelial cells by antiphospholipid antibodies. Arthritis Rheum. 2005;52(5):1545-1554.
      Yoon HJ, Cho SW, Ahn BW, Yang SY. Alterations in the activity and expression of endothelial NO synthase in aged human endothelial cells. Mech Ageing Dev. 2010;131(2):119-123.
      Halliwell B. What nitrates tyrosine? Is nitrotyrosine specific as a biomarker of peroxynitrite formation in vivo? FEBS Lett. 1997;411(2-3):157-160.
      Serhan CN, Savill J. Resolution of inflammation: the beginning programs the end. Nat Immunol. 2005;6(12):1191-1197.
      Parkinson JF. Lipoxin and synthetic lipoxin analogs: an overview of anti-inflammatory functions and new concepts in immunomodulation. Inflamm Allergy Drug Targets. 2006;5(2):91-106.
      Nascimento-Silva V, Arruda MA, Barja-Fidalgo C, Fierro IM. Aspirin-triggered lipoxin A4 blocks reactive oxygen species generation in endothelial cells: a novel antioxidative mechanism. Thromb Haemost. 2007;97(1):88-98.
      Weber C, Erl W, Pietsch A, Weber PC. Aspirin inhibits nuclear factor-kappa B mobilization and monocyte adhesion in stimulated human endothelial cells. Circulation. 1995;91(7):1914-1917.
      Amin AR, Vyas P, Attur M, et al. The mode of action of aspirin-like drugs: effect on inducible nitric oxide synthase. Proc Natl Acad Sci U S A. 1995;92(17):7926-7930.
      Shoelson SE, Lee J, Yuan M. Inflammation and the IKK beta/I kappa B/NF-kappa B axis in obesity- and diet-induced insulin resistance. Int J Obes Relat Metab Disord. 2003;27(3):S49-52. Suppl.
      Grilli M, Pizzi M, Memo M, Spano P. Neuroprotection by aspirin and sodium salicylate through blockade of NF-kappaB activation. Science. 1996;274(5291):1383-1385.
    • Contributed Indexing:
      Keywords: antiphospholipid antibodies; antiphospholipid syndrome; aspirin-triggered lipoxins; eNOS activation; nitrosative stress
    • الرقم المعرف:
      R16CO5Y76E (Aspirin)
      0 (Lipoxins)
      EC 1.14.13.39 (Nitric Oxide Synthase Type III)
      0 (Nitrites)
      0 (Immunoglobulin G)
    • الموضوع:
      Date Created: 20230726 Date Completed: 20230727 Latest Revision: 20230727
    • الموضوع:
      20230727
    • الرقم المعرف:
      10.1111/aji.13753
    • الرقم المعرف:
      37491919