References: Cordeiro TAR, de Resende MAC, Moraes SC dos S, et al (2021) Electrochemical biosensors for neglected tropical diseases: a review. Talanta 234:. https://doi.org/10.1016/j.talanta.2021.122617.
Kammona O, Tsanaktsidou E (2021) Nanotechnology-aided diagnosis, treatment and prevention of leishmaniasis. Int J Pharm 605:120761. https://doi.org/10.1016/j.ijpharm.2021.120761. (PMID: 10.1016/j.ijpharm.2021.12076134081999)
Weng HB, Chen HX, Wang MW (2018) Innovation in neglected tropical disease drug discovery and development. Infect Dis Poverty 7:1–9. https://doi.org/10.1186/s40249-018-0444-1. (PMID: 10.1186/s40249-018-0444-1)
World Healthy Organization (2023) Leishamaniasis. In: January 2023. https://www.who.int/news-room/fact-sheets/detail/leishmaniasis.
Ahmad A, Ullah S, Syed F et al (2020) Biogenic metal nanoparticles as a potential class of antileishmanial agents: mechanisms and molecular targets. Nanomedicine 15:809–828. https://doi.org/10.2217/nnm-2019-0413. (PMID: 10.2217/nnm-2019-041332207379)
Oliveira SS, Ferreira CS, Branquinha MH et al (2021) Overcoming multi-resistant leishmania treatment by nanoencapsulation of potent antimicrobials. J Chem Technol Biotechnol 96:2123–2140. https://doi.org/10.1002/jctb.6633. (PMID: 10.1002/jctb.6633)
Freire ML, Machado de Assis T, Oliveira E et al (2019) Performance of serological tests available in Brazil for the diagnosis of human visceral leishmaniasis. PLoS Negl Trop Dis 13:e0007484. https://doi.org/10.1371/journal.pntd.0007484. (PMID: 10.1371/journal.pntd.0007484313188566638734)
Farshchi F, Saadati A, Hasanzadeh M (2020) Optimized DNA-based biosensor for monitoring Leishmania infantum in human plasma samples using biomacromolecular interaction: a novel platform for infectious disease diagnosis. Anal Methods 12:4759–4768. https://doi.org/10.1039/D0AY01516D. (PMID: 10.1039/D0AY01516D32936128)
Martins BR, Barbosa YO, Andrade CMR et al (2020) Development of an electrochemical immunosensor for specific detection of visceral leishmaniasis using gold-modified screen-printed carbon electrodes. Biosensors 10:1–15. https://doi.org/10.3390/BIOS10080081. (PMID: 10.3390/BIOS10080081)
Braz BA, Hospinal-Santiani M, Martins G, et al (2022) Graphene-binding peptide in fusion with SARS-CoV-2 antigen for electrochemical immunosensor construction. Biosensors (Basel) 12:. https://doi.org/10.3390/bios12100885.
Gogola JL, Martins G, Gevaerd A et al (2021) Label-free aptasensor for p24-HIV protein detection based on graphene quantum dots as an electrochemical signal amplifier. Anal Chim Acta 1166:1–7. https://doi.org/10.1016/j.aca.2021.338548. (PMID: 10.1016/j.aca.2021.338548)
Valenga MGP, Martins G, Martins TAC et al (2023) Biochar: an environmentally friendly platform for construction of a SARS-CoV-2 electrochemical immunosensor. Sci Total Environ 858:159797. https://doi.org/10.1016/j.scitotenv.2022.159797. (PMID: 10.1016/j.scitotenv.2022.15979736334678)
Gevaerd A, Banks CE, Bergamini MF, Marcolino-Junior LH (2019) Graphene quantum dots modified screen-printed electrodes as electroanalytical sensing platform for diethylstilbestrol. Electroanalysis 31:838–843. https://doi.org/10.1002/elan.201800838. (PMID: 10.1002/elan.201800838)
Gevaerd A, Banks CE, Bergamini MF, Marcolino-Junior LH (2020) Nanomodified screen-printed electrode for direct determination of Aflatoxin B1 in malted barley samples. Sens Actuators B Chem 307:. https://doi.org/10.1016/j.snb.2019.127547.
Mansuriya B, Altintas Z (2020) Applications of graphene quantum dots in biomedical sensors. Sensors 20:1072. https://doi.org/10.3390/s20041072. (PMID: 10.3390/s20041072320791197070974)
Liberato MS, Mancini RSN, Factori IM et al (2019) Peptide-based assemblies on electrospun polyamide-6/chitosan nanofibers for detecting visceral leishmaniasis antibodies. ACS Appl Electron Mater 1:2086–2095. https://doi.org/10.1021/acsaelm.9b00476. (PMID: 10.1021/acsaelm.9b00476)
Brazaca LC, dos Santos PL, de Oliveira PR, et al (2021) Biosensing strategies for the electrochemical detection of viruses and viral diseases – a review. Anal Chim Acta 1159:. https://doi.org/10.1016/j.aca.2021.338384.
Cretich M, Gori A, D’Annessa I et al (2019) Peptides for infectious diseases: from probe design to diagnostic microarrays. Antibodies 8:23. https://doi.org/10.3390/antib8010023. (PMID: 10.3390/antib8010023315448296640701)
Pandey S, Malviya G, Chottova Dvorakova M (2021) Role of peptides in diagnostics. Int J Mol Sci 22:8828. https://doi.org/10.3390/ijms22168828. (PMID: 10.3390/ijms22168828344455328396325)
ThomazSoccol V, Pasquali AKS, Pozzolo EM et al (2017) More than the eyes can see: the worrying scenario of canine leishmaniasis in the Brazilian side of the triple border. PLoS One 12:e0189182. https://doi.org/10.1371/journal.pone.0189182. (PMID: 10.1371/journal.pone.0189182)
MINISTÉRIO DA SAÚDE (2006) Manual de vigilância e controle da leishmaniose visceral.
Alban SM, de Moura JF, Minozzo JC et al (2013) Identification of mimotopes of Mycobacterium leprae as potential diagnostic reagents. BMC Infect Dis 13:42. https://doi.org/10.1186/1471-2334-13-42. (PMID: 10.1186/1471-2334-13-42233511513585472)
Pereira JC, Dos Santos SP, De Souza LMB et al (2021) The efficacy of recombinant protein lbk39 for the diagnosis of leishmaniosis in dogs. Parasitology 148:302–310. https://doi.org/10.1017/S0031182020001997. (PMID: 10.1017/S003118202000199733070782)
Lamiable A, Thévenet P, Rey J et al (2016) PEP-FOLD3: faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Res 44:W449–W454. https://doi.org/10.1093/nar/gkw329. (PMID: 10.1093/nar/gkw329271313744987898)
Merrifield RB (1969) Solid-phase peptide synthesis. Adv Enzymol Relat Areas Mol Biol 221–96.
Ramos MK, Zarbin AJG (2020) Graphene/copper oxide nanoparticles thin films as precursor for graphene/copper hexacyanoferrate nanocomposites. Appl Surf Sci 515:146000. https://doi.org/10.1016/j.apsusc.2020.146000. (PMID: 10.1016/j.apsusc.2020.146000)
Lacina K, Věžník J, Sopoušek J et al (2023) Concentration and diffusion of the redox probe as key parameters for label-free impedimetric immunosensing. Bioelectrochemistry 149:108308. https://doi.org/10.1016/j.bioelechem.2022.108308. (PMID: 10.1016/j.bioelechem.2022.10830836356443)
Braiek M, Rokbani K, Chrouda A et al (2012) An electrochemical immunosensor for detection of Staphylococcus aureus bacteria based on immobilization of antibodies on self-assembled monolayers-functionalized gold electrode. Biosensors 2:417–426. https://doi.org/10.3390/bios2040417. (PMID: 10.3390/bios2040417255860324263564)
Eissa S, Zourob M (2021) Development of a low-cost cotton-tipped electrochemical immunosensor for the detection of SARS-CoV-2. Anal Chem 93:1826–1833. https://doi.org/10.1021/acs.analchem.0c04719. (PMID: 10.1021/acs.analchem.0c0471933370087)
Shaikh MO, Srikanth B, Zhu P-Y, Chuang C-H (2019) Impedimetric immunosensor utilizing polyaniline/gold nanocomposite-modified screen-printed electrodes for early detection of chronic kidney disease. Sensors 19:3990. https://doi.org/10.3390/s19183990. (PMID: 10.3390/s19183990315273966767334)
Wang K, Lin X, Zhang M et al (2022) Review of electrochemical biosensors for food safety detection. Biosensors 12:959. https://doi.org/10.3390/bios12110959. (PMID: 10.3390/bios12110959363544679688552)
Martins G, Gogola JL, Caetano FR et al (2019) Quick electrochemical immunoassay for hantavirus detection based on biochar platform. Talanta 204:163–171. https://doi.org/10.1016/j.talanta.2019.05.101. (PMID: 10.1016/j.talanta.2019.05.10131357278)
Biedulska M, Jakóbczyk P, Sosnowska M et al (2021) Cytocompatibility of stabilized black phosphorus nanosheets tailored by directly conjugated polymeric micelles for human breast cancer therapy. Sci Rep 11:9304. https://doi.org/10.1038/s41598-021-88791-7. (PMID: 10.1038/s41598-021-88791-7339272928085149)
Cui Y, Kim SN, Jones SE et al (2010) Chemical functionalization of graphene enabled by phage displayed peptides. Nano Lett 10:4559–4565. https://doi.org/10.1021/nl102564d. (PMID: 10.1021/nl102564d20942387)
Hughes ZE, Walsh TR (2015) What makes a good graphene-binding peptide? Adsorption of amino acids and peptides at aqueous graphene interfaces. J Mater Chem B 3:3211–3221. https://doi.org/10.1039/C5TB00004A. (PMID: 10.1039/C5TB00004A32262315)
Camden AN, Barr SA, Berry RJ (2013) Simulations of peptide-graphene interactions in explicit water. J Phys Chem B 117:10691–10697. https://doi.org/10.1021/jp403505y. (PMID: 10.1021/jp403505y23964693)
Nazari-Vanani R, Sattarahmady N, Yadegari H et al (2018) Electrochemical quantitation of Leishmania infantum based on detection of its kDNA genome and transduction of non-spherical gold nanoparticles. Anal Chim Acta 1041:40–49. https://doi.org/10.1016/j.aca.2018.08.036. (PMID: 10.1016/j.aca.2018.08.03630340689)
Cordeiro TAR, Martins HR, Franco DL et al (2020) Impedimetric immunosensor for rapid and simultaneous detection of chagas and visceral leishmaniasis for point of care diagnosis. Biosens Bioelectron 169:112573. https://doi.org/10.1016/j.bios.2020.112573. (PMID: 10.1016/j.bios.2020.11257332905944)
Ramos-Jesus J, Pontes-de-Carvalho LC, Melo SMB et al (2016) A gold nanoparticle piezoelectric immunosensor using a recombinant antigen for detecting Leishmania infantum antibodies in canine serum. Biochem Eng J 110:43–50. https://doi.org/10.1016/j.bej.2016.01.027. (PMID: 10.1016/j.bej.2016.01.027)
No Comments.