Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Disposable electrochemical platform based on solid-binding peptides and carbon nanomaterials: an alternative device for leishmaniasis detection.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Springer-Verlag Country of Publication: Austria NLM ID: 7808782 Publication Model: Electronic Cited Medium: Internet ISSN: 1436-5073 (Electronic) Linking ISSN: 00263672 NLM ISO Abbreviation: Mikrochim Acta Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: Wien ; New York : Springer-Verlag.
    • الموضوع:
    • نبذة مختصرة :
      Neglected tropical diseases are those caused by infectious agents or parasites and are considered endemic in low-income populations. These diseases also have unacceptable indicators and low investment in research, drug production, and control. Tropical diseases such as leishmaniasis are some of the main causes of morbidity and mortality around the globe. Electrochemical immunosensors are promising tools for diagnostics against these diseases. One such benefit is the possibility of assisting diagnosis in isolated regions, where laboratory infrastructure is lacking. In this work, different peptides were investigated to detect antibodies against Leishmania in human and canine serum samples. The peptides evaluated (395-KKG and 395-G) have the same recognition site but differ on their solid-binding domains, which ensure affinity to spontaneously bind to either graphene oxide (GO) or graphene quantum dots (GQD). Cyclic voltammetry and differential pulse voltammetry were employed to investigate the electrochemical behavior of each assembly step and the role of each solid-binding domain coupled to its anchoring material. The graphene affinity peptide (395-G) showed better reproducibility and selectivity when coupled to GQD. Under the optimized set of experimental conditions, negative and positive human serum samples responses were distinguished based on a cut-off value of 82.5% at a 95% confidence level. The immunosensor showed selective behavior to antibodies against Mycobacterium leprae and Mycobacterium tuberculosis, which are similar antibodies and potentially sources of false positive tests. Therefore, the use of the graphene affinity peptide as a recognition site achieved outstanding performance for the detection of Leishmania antibodies.
      (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.)
    • References:
      Cordeiro TAR, de Resende MAC, Moraes SC dos S, et al (2021) Electrochemical biosensors for neglected tropical diseases: a review. Talanta 234:. https://doi.org/10.1016/j.talanta.2021.122617.
      Kammona O, Tsanaktsidou E (2021) Nanotechnology-aided diagnosis, treatment and prevention of leishmaniasis. Int J Pharm 605:120761. https://doi.org/10.1016/j.ijpharm.2021.120761. (PMID: 10.1016/j.ijpharm.2021.12076134081999)
      Weng HB, Chen HX, Wang MW (2018) Innovation in neglected tropical disease drug discovery and development. Infect Dis Poverty 7:1–9. https://doi.org/10.1186/s40249-018-0444-1. (PMID: 10.1186/s40249-018-0444-1)
      World Healthy Organization (2023) Leishamaniasis. In: January 2023. https://www.who.int/news-room/fact-sheets/detail/leishmaniasis.
      Ahmad A, Ullah S, Syed F et al (2020) Biogenic metal nanoparticles as a potential class of antileishmanial agents: mechanisms and molecular targets. Nanomedicine 15:809–828. https://doi.org/10.2217/nnm-2019-0413. (PMID: 10.2217/nnm-2019-041332207379)
      Oliveira SS, Ferreira CS, Branquinha MH et al (2021) Overcoming multi-resistant leishmania treatment by nanoencapsulation of potent antimicrobials. J Chem Technol Biotechnol 96:2123–2140. https://doi.org/10.1002/jctb.6633. (PMID: 10.1002/jctb.6633)
      Freire ML, Machado de Assis T, Oliveira E et al (2019) Performance of serological tests available in Brazil for the diagnosis of human visceral leishmaniasis. PLoS Negl Trop Dis 13:e0007484. https://doi.org/10.1371/journal.pntd.0007484. (PMID: 10.1371/journal.pntd.0007484313188566638734)
      Farshchi F, Saadati A, Hasanzadeh M (2020) Optimized DNA-based biosensor for monitoring Leishmania infantum in human plasma samples using biomacromolecular interaction: a novel platform for infectious disease diagnosis. Anal Methods 12:4759–4768. https://doi.org/10.1039/D0AY01516D. (PMID: 10.1039/D0AY01516D32936128)
      Martins BR, Barbosa YO, Andrade CMR et al (2020) Development of an electrochemical immunosensor for specific detection of visceral leishmaniasis using gold-modified screen-printed carbon electrodes. Biosensors 10:1–15. https://doi.org/10.3390/BIOS10080081. (PMID: 10.3390/BIOS10080081)
      Braz BA, Hospinal-Santiani M, Martins G, et al (2022) Graphene-binding peptide in fusion with SARS-CoV-2 antigen for electrochemical immunosensor construction. Biosensors (Basel) 12:. https://doi.org/10.3390/bios12100885.
      Gogola JL, Martins G, Gevaerd A et al (2021) Label-free aptasensor for p24-HIV protein detection based on graphene quantum dots as an electrochemical signal amplifier. Anal Chim Acta 1166:1–7. https://doi.org/10.1016/j.aca.2021.338548. (PMID: 10.1016/j.aca.2021.338548)
      Valenga MGP, Martins G, Martins TAC et al (2023) Biochar: an environmentally friendly platform for construction of a SARS-CoV-2 electrochemical immunosensor. Sci Total Environ 858:159797. https://doi.org/10.1016/j.scitotenv.2022.159797. (PMID: 10.1016/j.scitotenv.2022.15979736334678)
      Gevaerd A, Banks CE, Bergamini MF, Marcolino-Junior LH (2019) Graphene quantum dots modified screen-printed electrodes as electroanalytical sensing platform for diethylstilbestrol. Electroanalysis 31:838–843. https://doi.org/10.1002/elan.201800838. (PMID: 10.1002/elan.201800838)
      Gevaerd A, Banks CE, Bergamini MF, Marcolino-Junior LH (2020) Nanomodified screen-printed electrode for direct determination of Aflatoxin B1 in malted barley samples. Sens Actuators B Chem 307:. https://doi.org/10.1016/j.snb.2019.127547.
      Mansuriya B, Altintas Z (2020) Applications of graphene quantum dots in biomedical sensors. Sensors 20:1072. https://doi.org/10.3390/s20041072. (PMID: 10.3390/s20041072320791197070974)
      Liberato MS, Mancini RSN, Factori IM et al (2019) Peptide-based assemblies on electrospun polyamide-6/chitosan nanofibers for detecting visceral leishmaniasis antibodies. ACS Appl Electron Mater 1:2086–2095. https://doi.org/10.1021/acsaelm.9b00476. (PMID: 10.1021/acsaelm.9b00476)
      Brazaca LC, dos Santos PL, de Oliveira PR, et al (2021) Biosensing strategies for the electrochemical detection of viruses and viral diseases – a review. Anal Chim Acta 1159:. https://doi.org/10.1016/j.aca.2021.338384.
      Cretich M, Gori A, D’Annessa I et al (2019) Peptides for infectious diseases: from probe design to diagnostic microarrays. Antibodies 8:23. https://doi.org/10.3390/antib8010023. (PMID: 10.3390/antib8010023315448296640701)
      Pandey S, Malviya G, Chottova Dvorakova M (2021) Role of peptides in diagnostics. Int J Mol Sci 22:8828. https://doi.org/10.3390/ijms22168828. (PMID: 10.3390/ijms22168828344455328396325)
      ThomazSoccol V, Pasquali AKS, Pozzolo EM et al (2017) More than the eyes can see: the worrying scenario of canine leishmaniasis in the Brazilian side of the triple border. PLoS One 12:e0189182. https://doi.org/10.1371/journal.pone.0189182. (PMID: 10.1371/journal.pone.0189182)
      MINISTÉRIO DA SAÚDE (2006) Manual de vigilância e controle da leishmaniose visceral.
      Alban SM, de Moura JF, Minozzo JC et al (2013) Identification of mimotopes of Mycobacterium leprae as potential diagnostic reagents. BMC Infect Dis 13:42. https://doi.org/10.1186/1471-2334-13-42. (PMID: 10.1186/1471-2334-13-42233511513585472)
      Pereira JC, Dos Santos SP, De Souza LMB et al (2021) The efficacy of recombinant protein lbk39 for the diagnosis of leishmaniosis in dogs. Parasitology 148:302–310. https://doi.org/10.1017/S0031182020001997. (PMID: 10.1017/S003118202000199733070782)
      Lamiable A, Thévenet P, Rey J et al (2016) PEP-FOLD3: faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Res 44:W449–W454. https://doi.org/10.1093/nar/gkw329. (PMID: 10.1093/nar/gkw329271313744987898)
      Merrifield RB (1969) Solid-phase peptide synthesis. Adv Enzymol Relat Areas Mol Biol 221–96.
      Ramos MK, Zarbin AJG (2020) Graphene/copper oxide nanoparticles thin films as precursor for graphene/copper hexacyanoferrate nanocomposites. Appl Surf Sci 515:146000. https://doi.org/10.1016/j.apsusc.2020.146000. (PMID: 10.1016/j.apsusc.2020.146000)
      Lacina K, Věžník J, Sopoušek J et al (2023) Concentration and diffusion of the redox probe as key parameters for label-free impedimetric immunosensing. Bioelectrochemistry 149:108308. https://doi.org/10.1016/j.bioelechem.2022.108308. (PMID: 10.1016/j.bioelechem.2022.10830836356443)
      Braiek M, Rokbani K, Chrouda A et al (2012) An electrochemical immunosensor for detection of Staphylococcus aureus bacteria based on immobilization of antibodies on self-assembled monolayers-functionalized gold electrode. Biosensors 2:417–426. https://doi.org/10.3390/bios2040417. (PMID: 10.3390/bios2040417255860324263564)
      Eissa S, Zourob M (2021) Development of a low-cost cotton-tipped electrochemical immunosensor for the detection of SARS-CoV-2. Anal Chem 93:1826–1833. https://doi.org/10.1021/acs.analchem.0c04719. (PMID: 10.1021/acs.analchem.0c0471933370087)
      Shaikh MO, Srikanth B, Zhu P-Y, Chuang C-H (2019) Impedimetric immunosensor utilizing polyaniline/gold nanocomposite-modified screen-printed electrodes for early detection of chronic kidney disease. Sensors 19:3990. https://doi.org/10.3390/s19183990. (PMID: 10.3390/s19183990315273966767334)
      Wang K, Lin X, Zhang M et al (2022) Review of electrochemical biosensors for food safety detection. Biosensors 12:959. https://doi.org/10.3390/bios12110959. (PMID: 10.3390/bios12110959363544679688552)
      Martins G, Gogola JL, Caetano FR et al (2019) Quick electrochemical immunoassay for hantavirus detection based on biochar platform. Talanta 204:163–171. https://doi.org/10.1016/j.talanta.2019.05.101. (PMID: 10.1016/j.talanta.2019.05.10131357278)
      Biedulska M, Jakóbczyk P, Sosnowska M et al (2021) Cytocompatibility of stabilized black phosphorus nanosheets tailored by directly conjugated polymeric micelles for human breast cancer therapy. Sci Rep 11:9304. https://doi.org/10.1038/s41598-021-88791-7. (PMID: 10.1038/s41598-021-88791-7339272928085149)
      Cui Y, Kim SN, Jones SE et al (2010) Chemical functionalization of graphene enabled by phage displayed peptides. Nano Lett 10:4559–4565. https://doi.org/10.1021/nl102564d. (PMID: 10.1021/nl102564d20942387)
      Hughes ZE, Walsh TR (2015) What makes a good graphene-binding peptide? Adsorption of amino acids and peptides at aqueous graphene interfaces. J Mater Chem B 3:3211–3221. https://doi.org/10.1039/C5TB00004A. (PMID: 10.1039/C5TB00004A32262315)
      Camden AN, Barr SA, Berry RJ (2013) Simulations of peptide-graphene interactions in explicit water. J Phys Chem B 117:10691–10697. https://doi.org/10.1021/jp403505y. (PMID: 10.1021/jp403505y23964693)
      Nazari-Vanani R, Sattarahmady N, Yadegari H et al (2018) Electrochemical quantitation of Leishmania infantum based on detection of its kDNA genome and transduction of non-spherical gold nanoparticles. Anal Chim Acta 1041:40–49. https://doi.org/10.1016/j.aca.2018.08.036. (PMID: 10.1016/j.aca.2018.08.03630340689)
      Cordeiro TAR, Martins HR, Franco DL et al (2020) Impedimetric immunosensor for rapid and simultaneous detection of chagas and visceral leishmaniasis for point of care diagnosis. Biosens Bioelectron 169:112573. https://doi.org/10.1016/j.bios.2020.112573. (PMID: 10.1016/j.bios.2020.11257332905944)
      Ramos-Jesus J, Pontes-de-Carvalho LC, Melo SMB et al (2016) A gold nanoparticle piezoelectric immunosensor using a recombinant antigen for detecting Leishmania infantum antibodies in canine serum. Biochem Eng J 110:43–50. https://doi.org/10.1016/j.bej.2016.01.027. (PMID: 10.1016/j.bej.2016.01.027)
    • Contributed Indexing:
      Keywords: Electrochemical immunosensor; Graphene oxide; Graphene quantum dots; Leishmaniasis; Screen-printed electrode; Solid-binding peptide; Voltammetry
    • الرقم المعرف:
      7440-44-0 (Carbon)
      7782-42-5 (Graphite)
      0 (Peptides)
      0 (Antibodies)
    • الموضوع:
      Date Created: 20230726 Date Completed: 20230727 Latest Revision: 20230808
    • الموضوع:
      20240829
    • الرقم المعرف:
      10.1007/s00604-023-05891-z
    • الرقم المعرف:
      37491620