Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Laser-induced graphene electrodes on polyimide membranes modified with gold nanoparticles for the simultaneous detection of dopamine and uric acid in human serum.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Springer-Verlag Country of Publication: Austria NLM ID: 7808782 Publication Model: Electronic Cited Medium: Internet ISSN: 1436-5073 (Electronic) Linking ISSN: 00263672 NLM ISO Abbreviation: Mikrochim Acta Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: Wien ; New York : Springer-Verlag.
    • الموضوع:
    • نبذة مختصرة :
      The level control of biological active molecules in human body fluids is important for the surveillance of several human diseases. Dopamine (DA) and uric acid (UA) are two important biomarkers of neurological and bone diseases, respectively. Design of sensitive and cost-effective sensors for their detection is an effervescent research field. We report on the straightforward design of laser-induced graphene electrodes (LIGEs) from the laser ablation of a polyimide substrate and their modification by electrochemical deposition of gold nanoparticles (AuNPs/LIGE) and their uses as chemosensors. Electrochemical investigations showed that the presence of gold nanoclusters onto the electrode surface improved the electrochemical surface area (ECSA) and the heterogenous electron transfer (HET) rate. Furthermore, the AuNPs/LIGEs can be used to detect simultaneously low concentrations of DA and UA in presence of ascorbic acid (AA) as an potentially interfering substance at redox potentials of 300 mV, 230 mV and 450 mV and 91 mV, respectively, compared with the Ag/AgCl (3 M KCl) reference electrode in cyclic voltametric. The method displayed linear ranges varying from 2 to 20 μM and 5 to 50 μM, led to limits of detection of 0.37 μM and 0.71 μM for DA and UA, respectively. The AuNPs/LIGE was applied to simultaneously detect both analytes in scarcely diluted human serum with good recoveries. The data show that the recovery percentages ranged from 94% ± 2.1 to 102 % ± 0.5 and from 94% ±0.3 to 112% ± 1.4 for dopamine and uric acid, respectively. Thus, the AuNPs/LIGEs are promising candidates for the detection of other biologically active molecules such as drugs, pesticides, and metabolites.
      (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.)
    • References:
      Zhang X, Zhang Y-C, Ma L-X (2016) One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Sens Actuators B 227:488–496. https://doi.org/10.1016/j.snb.2015.12.073. (PMID: 10.1016/j.snb.2015.12.073)
      Yang B, Wang H, Du J et al (2014) Direct electrodeposition of reduced graphene oxide on carbon fiber electrode for simultaneous determination of ascorbic acid, dopamine and uric acid. Colloids Surf A Physicochem Eng Asp 456:146–152. https://doi.org/10.1016/j.colsurfa.2014.05.029. (PMID: 10.1016/j.colsurfa.2014.05.029)
      El Ridi R, Tallima H (2017) Physiological functions and pathogenic potential of uric acid: a review. J Adv Res 8:487–493. https://doi.org/10.1016/j.jare.2017.03.003. (PMID: 10.1016/j.jare.2017.03.003287481155512149)
      Xu G, Jarjes ZA, Desprez V et al (2018) Sensitive, selective, disposable electrochemical dopamine sensor based on PEDOT-modified laser scribed graphene. Biosens Bioelectron 107:184–191. https://doi.org/10.1016/j.bios.2018.02.031. (PMID: 10.1016/j.bios.2018.02.03129459331)
      Causon RC, Carruthers ME, Rodnight R (1981) Assay of plasma catecholamines by liquid chromatography with electrochemical detection. Anal Biochem 116:223–226. https://doi.org/10.1016/0003-2697(81)90347-X. (PMID: 10.1016/0003-2697(81)90347-X7304981)
      Perati PR, Cheng J, Jandik P, Hanko VP (2010) Disposable carbon electrodes for liquid chromatographic detection of catecholamines in blood plasma samples. Electroanalysis 22:325–332. https://doi.org/10.1002/elan.200900334. (PMID: 10.1002/elan.200900334)
      Arumugasamy SK, Govindaraju S, Yun K (2020) Electrochemical sensor for detecting dopamine using graphene quantum dots incorporated with multiwall carbon nanotubes. Appl Surf Sci 508:145294. https://doi.org/10.1016/j.apsusc.2020.145294. (PMID: 10.1016/j.apsusc.2020.145294)
      Chauhan N, Pundir CS (2011) An amperometric uric acid biosensor based on multiwalled carbon nanotube – gold nanoparticle composite. Anal Biochem 413:97–103. https://doi.org/10.1016/j.ab.2011.02.007. (PMID: 10.1016/j.ab.2011.02.00721315682)
      Abbas MW, Soomro RA, Kalwar NH et al (2019) Carbon quantum dot coated Fe3O4 hybrid composites for sensitive electrochemical detection of uric acid. Microchem J 146:517–524. https://doi.org/10.1016/j.microc.2019.01.034. (PMID: 10.1016/j.microc.2019.01.034)
      Erden PE, Kılıç E (2013) A review of enzymatic uric acid biosensors based on amperometric detection. Talanta 107:312–323. https://doi.org/10.1016/j.talanta.2013.01.043. (PMID: 10.1016/j.talanta.2013.01.04323598228)
      Lan Y, Yuan F, Fereja TH et al (2019) Chemiluminescence of lucigenin/riboflavin and its application for selective and sensitive dopamine detection. Anal Chem 91:2135–2139. https://doi.org/10.1021/acs.analchem.8b04670. (PMID: 10.1021/acs.analchem.8b0467030582677)
      Mostafiz B, Bigdeli SA, Banan K et al (2021) Molecularly imprinted polymer-carbon paste electrode (MIP-CPE)-based sensors for the sensitive detection of organic and inorganic environmental pollutants: a review. Trends Environ Anal Chem 32:e00144. https://doi.org/10.1016/j.teac.2021.e00144. (PMID: 10.1016/j.teac.2021.e00144)
      Qi D, Zhang Q, Zhou W et al (2016) Quantification of dopamine in brain microdialysates with high-performance liquid chromatography-tandem mass spectrometry. Anal Sci 32:419–424. https://doi.org/10.2116/analsci.32.419. (PMID: 10.2116/analsci.32.41927063714)
      Land KJ, Boeras DI, Chen X-S et al (2018) REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes. Nat Microbiol 4:46–54. https://doi.org/10.1038/s41564-018-0295-3. (PMID: 10.1038/s41564-018-0295-3305460937097043)
      Otoo JA, Schlappi TS (2022) REASSURED Multiplex Diagnostics: a critical review and forecast. Biosensors 12:124. https://doi.org/10.3390/bios12020124. (PMID: 10.3390/bios12020124352003848869588)
      Forzani ES, Rivas GA, Solis VM (1995) Amperometric determination of dopamine on an enzymatically modified carbon paste electrode. J Electroanal Chem 382:33–40. https://doi.org/10.1016/0022-0728(94)03640-O. (PMID: 10.1016/0022-0728(94)03640-O)
      Zhang F, Wang X, Ai S et al (2004) Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor. Anal Chim Acta 519:155–160. https://doi.org/10.1016/j.aca.2004.05.070. (PMID: 10.1016/j.aca.2004.05.070)
      Faruk Hossain M, Slaughter G (2021) Flexible electrochemical uric acid and glucose biosensor. Bioelectrochemistry 141:107870. https://doi.org/10.1016/j.bioelechem.2021.107870. (PMID: 10.1016/j.bioelechem.2021.10787034118555)
      Santos NF, Pereira SO, Moreira A et al (2021) IR and UV laser-induced graphene: application as dopamine electrochemical sensors. Advanced Materials Technologies 6:2100007. https://doi.org/10.1002/admt.202100007. (PMID: 10.1002/admt.202100007)
      Lahcen AA, Rauf S, Beduk T et al (2020) Electrochemical sensors and biosensors using laser-derived graphene: a comprehensive review. Biosens Bioelectron 168:112565. https://doi.org/10.1016/j.bios.2020.112565. (PMID: 10.1016/j.bios.2020.11256532927277)
      Lin J, Peng Z, Liu Y et al (2014) Laser-induced porous graphene films from commercial polymers. Nat Commun 5:5714. https://doi.org/10.1038/ncomms6714. (PMID: 10.1038/ncomms671425493446)
      Wang F, Wang K, Zheng B et al (2018) Laser-induced graphene: preparation, functionalization and applications. Mater Technol 33:340–356. https://doi.org/10.1080/10667857.2018.1447265. (PMID: 10.1080/10667857.2018.1447265)
      Chyan Y, Ye R, Li Y et al (2018) Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food. ACS Nano 12:2176–2183. https://doi.org/10.1021/acsnano.7b08539. (PMID: 10.1021/acsnano.7b0853929436816)
      Silva AD, Paschoalino WJ, Damasceno JPV, Kubota LT (2020) Structure, properties, and electrochemical sensing applications of graphene-based materials. ChemElectroChem 7:4508–4525. https://doi.org/10.1002/celc.202001168. (PMID: 10.1002/celc.202001168)
      Hui X, Xuan X, Kim J, Park JY (2019) A highly flexible and selective dopamine sensor based on Pt-Au nanoparticle-modified laser-induced graphene. Electrochim Acta 328:135066. https://doi.org/10.1016/j.electacta.2019.135066. (PMID: 10.1016/j.electacta.2019.135066)
      Chang Z, Zhu B, Liu J et al (2021) Electrochemical aptasensor for 17β-estradiol using disposable laser scribed graphene electrodes. Biosens Bioelectron 185:113247. https://doi.org/10.1016/j.bios.2021.113247. (PMID: 10.1016/j.bios.2021.11324733962157)
      Fenzl C, Nayak P, Hirsch T et al (2017) Laser-scribed graphene electrodes for aptamer-based biosensing. ACS Sens 2:616–620. https://doi.org/10.1021/acssensors.7b00066. (PMID: 10.1021/acssensors.7b0006628723173)
      Aparicio-Martínez E, Ibarra A, Estrada-Moreno IA et al (2019) Flexible electrochemical sensor based on laser scribed graphene/Ag nanoparticles for non-enzymatic hydrogen peroxide detection. Sens Actuators B 301:127101. https://doi.org/10.1016/j.snb.2019.127101. (PMID: 10.1016/j.snb.2019.127101)
      Kurra N, Jiang Q, Nayak P, Alshareef HN (2019) Laser-derived graphene: a three-dimensional printed graphene electrode and its emerging applications. Nano Today 24:81–102. https://doi.org/10.1016/j.nantod.2018.12.003. (PMID: 10.1016/j.nantod.2018.12.003)
      Baachaoui S, Mabrouk M, Rabti A, Ghodbane O, Raouafi N (2023) Laser-induced graphene electrodes scribed onto novel carbon black-doped polyethersulfone membranes for flexible high-performance microsupercapacitors. J Colloid Interface Sci 646:1–10. https://doi.org/10.1016/j.jcis.2023.05.024.
      Ghanam A, Lahcen AA, Beduk T et al (2020) Laser scribed graphene: a novel platform for highly sensitive detection of electroactive biomolecules. Biosens Bioelectron 168:112509. https://doi.org/10.1016/j.bios.2020.112509. (PMID: 10.1016/j.bios.2020.11250932877778)
      Berni A, Lahcen AA, Amine A (2022) Electrochemical sensing of paracetamol using 3D porous laser scribed graphene platform. Electroanalysis elan.202200137. https://doi.org/10.1002/elan.202200137.
      Kavai MS, de Lima LF, de Araujo WR (2023) A disposable and low-cost laser-scribed graphene electrochemical sensor for simultaneous detection of hydroquinone, paracetamol and methylparaben. Mater Lett 330:133211. https://doi.org/10.1016/j.matlet.2022.133211. (PMID: 10.1016/j.matlet.2022.133211)
      Nasraoui S, Ameur S, Al-Hamry A et al (2022) Development of an efficient voltammetric sensor for the monitoring of 4-aminophenol based on flexible laser induced graphene electrodes modified with MWCNT-PANI. Sensors 22:833. https://doi.org/10.3390/s22030833. (PMID: 10.3390/s22030833351615788840637)
      Behrent A, Griesche C, Sippel P, Baeumner AJ (2021) Process-property correlations in laser-induced graphene electrodes for electrochemical sensing. Microchim Acta 188:159. https://doi.org/10.1007/s00604-021-04792-3. (PMID: 10.1007/s00604-021-04792-3)
      Chem JM (2012) One-step and high yield simultaneous preparation of single- and multi-layer. 8764–8766. https://doi.org/10.1039/c2jm30658a.
      Argoubi W, Saadaoui M, Ben Aoun S, Raouafi N (2015) Optimized design of a nanostructured SPCE-based multipurpose biosensing platform formed by ferrocene-tethered electrochemically-deposited cauliflower-shaped gold nanoparticles. Beilstein J Nanotechnol 6:1840–1852. https://doi.org/10.3762/bjnano.6.187. (PMID: 10.3762/bjnano.6.187264254354578399)
      Dreyfus RW (1992) CN temperatures above laser ablated polyimide. Appl Phys A 55:335–339. https://doi.org/10.1007/BF00324081. (PMID: 10.1007/BF00324081)
      Hui Z, Wenmin W (2016) Sensitive electrochemical determination uric acid at Pt nanoparticles decorated graphene composites in the presence of dopamine and ascorbic acid. Int J Electrochem Sci:5197–5206. https://doi.org/10.20964/2016.06.54.
      Ferrari AC, Meyer JC, Scardaci V et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401. https://doi.org/10.1103/PhysRevLett.97.187401. (PMID: 10.1103/PhysRevLett.97.18740117155573)
      Nayak P, Kurra N, Xia C, Alshareef HN (2016) Highly efficient laser scribed graphene electrodes for on-chip electrochemical sensing applications. Adv Electron Mater 2:1600185. https://doi.org/10.1002/aelm.201600185. (PMID: 10.1002/aelm.201600185)
      Nicholson RS (1965) Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal Chem 37:1351–1355. https://doi.org/10.1021/ac60230a016. (PMID: 10.1021/ac60230a016)
      Muzyka K, Xu G (2022) Laser induced graphene in facts, numbers, and notes in view of electroanalytical applications: a review. Electroanalysis 34:574–589. https://doi.org/10.1002/elan.202100425. (PMID: 10.1002/elan.202100425)
      Ojani R, Raoof JB, Maleki AA, Safshekan S Simultaneous and sensitive detection of dopamine and uric acid using a poly ( L - methionine )/ gold nanoparticle - modified glassy carbon electrode. Chinese J Catal 35:423–429. https://doi.org/10.1016/S1872-2067(14)60022-X.
      Wang C, Du J, Wang H et al (2014) A facile electrochemical sensor based on reduced graphene oxide and Au nanoplates modified glassy carbon electrode for simultaneous detection of ascorbic acid, dopamine and uric acid. Sens Actuators B 204:302–309. https://doi.org/10.1016/j.snb.2014.07.077. (PMID: 10.1016/j.snb.2014.07.077)
      Umek N, Geršak B, Vintar N et al (2018) Dopamine autoxidation is controlled by acidic pH. Front Mol Neurosci 11:467. https://doi.org/10.3389/fnmol.2018.00467. (PMID: 10.3389/fnmol.2018.00467306186166305604)
      Shen Y, Ye MY (1994) Determination of the stability of dopamine in aqueous solutions by high performance liquid chromatography. J Liq Chromatogr 17:1557–1565. https://doi.org/10.1080/10826079408013178. (PMID: 10.1080/10826079408013178)
      Alba AF, Totoricaguena-Gorriño J, Sánchez-Ilárduya MB et al (2021) Laser-activated screen-printed carbon electrodes for enhanced dopamine determination in the presence of ascorbic and uric acid. Electrochim Acta 399:139374. https://doi.org/10.1016/j.electacta.2021.139374. (PMID: 10.1016/j.electacta.2021.139374)
      Zouari M, Campuzano S, Pingarrón JM, Raouafi N (2017) Competitive RNA-RNA hybridization-based integrated nanostructured-disposable electrode for highly sensitive determination of miRNAs in cancer cells. Biosens Bioelectron 91:40–45. https://doi.org/10.1016/j.bios.2016.12.033. (PMID: 10.1016/j.bios.2016.12.03327987409)
      Zouari M, Campuzano S, Pingarrón JM, Raouafi N (2018) Ultrasensitive determination of microribonucleic acids in cancer cells with nanostructured-disposable electrodes using the viral protein p19 for recognition of ribonucleic acid/microribonucleic acid homoduplexes. Electrochim Acta 262:39–47. https://doi.org/10.1016/j.electacta.2017.12.190. (PMID: 10.1016/j.electacta.2017.12.190)
      Zouari M, Campuzano S, Pingarrón JM, Raouafi N (2020) Determination of miRNAs in serum of cancer patients with a label- and enzyme-free voltammetric biosensor in a single 30-min step. Microchim Acta 187:444. https://doi.org/10.1007/s00604-020-04400-w. (PMID: 10.1007/s00604-020-04400-w)
      Zayani R, Rabti A, Ben Aoun S, Raouafi N (2021) Fluorescent and electrochemical bimodal bioplatform for femtomolar detection of microRNAs in blood sera. Sens Actuators B 327:128950. https://doi.org/10.1016/j.snb.2020.128950. (PMID: 10.1016/j.snb.2020.128950)
    • Contributed Indexing:
      Keywords: Dopamine; Gold nanoparticles; Laser-induced graphene; Modified electrodes; Cyclic voltammetry; Sensing; Uric acid
    • الرقم المعرف:
      VTD58H1Z2X (Dopamine)
      268B43MJ25 (Uric Acid)
      7440-57-5 (Gold)
      7782-42-5 (Graphite)
    • الموضوع:
      Date Created: 20230722 Date Completed: 20230724 Latest Revision: 20230808
    • الموضوع:
      20231215
    • الرقم المعرف:
      10.1007/s00604-023-05909-6
    • الرقم المعرف:
      37480385