Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Abundance and composition of polycyclic aromatic hydrocarbons in the surface sediments of twelve alpine lakes in the Central Taurus Mountains.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- المؤلفون: Yakan SD;Yakan SD; Çelik İE; Çelik İE; Özkan K; Özkan K
- المصدر:
Environmental monitoring and assessment [Environ Monit Assess] 2023 Jul 20; Vol. 195 (8), pp. 974. Date of Electronic Publication: 2023 Jul 20.- نوع النشر :
Journal Article- اللغة:
English - المصدر:
- معلومة اضافية
- المصدر: Publisher: Springer Country of Publication: Netherlands NLM ID: 8508350 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2959 (Electronic) Linking ISSN: 01676369 NLM ISO Abbreviation: Environ Monit Assess Subsets: MEDLINE
- بيانات النشر: Publication: 1998- : Dordrecht : Springer
Original Publication: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981- - الموضوع:
- نبذة مختصرة : The regions of Bolkar Mountains and Aladağlar accommodate a unique ecosystem in Turkey, due to being in a transitional climate between the continental and the Mediterranean and hosting alpine lakes which are considered as good indicators of regional and atmospheric pollution due to being far from direct human impact. On the other hand, these regions are surrounded by various power plants, and also subject to occasional human activities, where anthropogenic effects are expected to be. Sediment samples were collected from 12 lakes in Central Taurus Mountains, 6 lakes in Bolkar Mountains, and 6 lakes in Aladağlar. Fifteen PAHs, identified as priority pollutants by the US Environmental Protection Agency (EPA), as well as lake water chemical characteristics were determined. The distribution of analyzed PAHs was investigated, and PAH diagnostic ratios were calculated to identify their potential sources. It was a remarkable observation that only low-molecular-weight PAHs exist in the lakes of Aladağlar, whereas high-molecular-weight PAHs are also found in the lakes of Bolkar Mountains, likely reflecting more isolated characteristics of the Aladağlar region. As compatible with this observation, total PAHs (T-PAHs) were found lower in Aladağlar (0.00-105.78 ng/g w.w.) than in Bolkar Mountains (9.08-380.16 ng/g w.w.). Overall, T-PAHs of sampled lakes were found in a similar range when they are compared to the other high-altitude alpine lakes around the world, indicating no significant difference in terms of atmospheric pollution of the global average.
(© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.) - References: Altın, T. (2006). Aladağlar ve Bolkar Dağları üzerinde görülen periglasial jeomoroflojik şekiller. Türk Coğrafya Dergisi, 46, 105–122.
APHA. (2005). Standard methods for the examination of water and wastewater. APHA. In American Water Works Association and Water Environment Federation, 21st ed.; American Public Health Association: Washington, DC, USA.
Bai, Y., Shi, K., Yu, H., Shang, N., Hao, W., Wang, C., & Huang, C. (2022). Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in a sediment core from Lake Dagze Co, Tibetan Plateau, China: Comparison of three receptor models. Journal of Environmental Sciences (china), 121, 224–233. https://doi.org/10.1016/j.jes.2022.01.043. (PMID: 10.1016/j.jes.2022.01.043)
Barra, R., Popp, P., Quiroz, R., Treutler, H.-C., Araneda, A., Bauer, C., & Urrutia, R. (2006). Polycyclic aromatic hydrocarbons fluxes during the past 50 years observed in dated sediment cores from Andean mountain lakes in central south Chile. Ecotoxicology and Environmental Safety, 63(1), 52–60. (PMID: 10.1016/j.ecoenv.2005.07.025)
Blais, J. M., Rosen, M. R., & Smol, J. P. (2015). Environmental contaminants: Using natural archives to track sources and long-term trends of pollution (Vol. 18). Springer.
Brändli, R. C., Bucheli, T. D., Kupper, T., Mayer, J., Stadelmann, F. X., & Tarradellas, J. (2007). Fate of PCBs, PAHs and their source characteristic ratios during composting and digestion of source-separated organic waste in full-scale plants. Environmental Pollution, 148(2), 520–528. https://doi.org/10.1016/j.envpol.2006.11.021. (PMID: 10.1016/j.envpol.2006.11.021)
Budzinski, H., Jones, I., Bellocq, J., Piérard, C., & Garrigues, P. (1997). Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Marine Chemistry, 58(1–2), 85–97. https://doi.org/10.1016/S0304-4203(97)00028-5. (PMID: 10.1016/S0304-4203(97)00028-5)
Cao, Y., Lin, C., Zhang, X., Liu, X., He, M., & Ouyang, W. (2020). Distribution, source, and ecological risks of polycyclic aromatic hydrocarbons in Lake Qinghai, China. Environmental Pollution. https://doi.org/10.1016/j.envpol.2020.115401. (PMID: 10.1016/j.envpol.2020.115401)
Crawley, M. J. (2012). The R Book. https://doi.org/10.1002/9781118448908.
Deng, J., Zhang, Y., Qiu, Y., Zhang, H., Du, W., Xu, L., & Chen, J. (2018). Source apportionment of PM2.5 at the Lin’an regional background site in China with three receptor models. Atmospheric Research, 202, 23–32. https://doi.org/10.1016/j.atmosres.2017.11.017. (PMID: 10.1016/j.atmosres.2017.11.017)
Doğa Derneği. (2018). Bolkar Dağları AKD054. Retrieved July 7, 2023, from https://www.dogadernegi.org/wp-content/uploads/2018/11/akd054-bolkar-daglari-onemli-doga-alanlari-kitabi.pdf.
Fernández, P., Vilanova, R. M., & Grimalt, J. O. (1999). Sediment fluxes of polycyclic aromatic hydrocarbons in European high altitude mountain lakes. Environmental Science and Technology, 33, 3716–3722. https://doi.org/10.1021/es9904639. (PMID: 10.1021/es9904639)
Grasshoff, K., Ehrhardt, M., Kremling, K., & Almgren, T. (1983). Methods of seawater analysis 2nd rev. and extended edn Verlag Chemie. Weinheim, 28, p419.
Grimalt, J. O., van Drooge, B. L., Ribes, A., Fernández, P., & Appleby, P. (2004). Polycyclic aromatic hydrocarbon composition in soils and sediments of high altitude lakes. Environmental Pollution, 131, 13–24. https://doi.org/10.1016/j.envpol.2004.02.024. (PMID: 10.1016/j.envpol.2004.02.024)
Guo, J., Chen, J., & Wang, J. (2017). Sedimentary records of polycyclic aromatic hydrocarbons in China: A comparison to the worldwide. Critical Reviews in Environmental Science and Technology, 47(17), 1612–1667. (PMID: 10.1080/10643389.2017.1393262)
Holm-Hansen, O., Lorenzen, C. J., Holmes, R. W., & Strickland, J. D. H. (1965). Fluorometric determination of chlorophyll. ICES Journal of Marine Science, 30(1), 3–15. (PMID: 10.1093/icesjms/30.1.3)
Hwang, H.-M., Wade, T. L., & Sericano, J. L. (2003). Concentrations and source characterization of polycyclic aromatic hydrocarbons in pine needles from Korea, Mexico, and United States. Atmospheric Environment, 37(16), 2259–2267. (PMID: 10.1016/S1352-2310(03)00090-6)
Ihaka, R., & Gentleman, R. (1996). R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5(3), 299. https://doi.org/10.2307/1390807. (PMID: 10.2307/1390807)
Katsoyiannis, A., Terzi, E., & Cai, Q.-Y. (2007). On the use of PAH molecular diagnostic ratios in sewage sludge for the understanding of the PAH sources. Is this use appropriate? Chemosphere, 69(8), 1337–1339. (PMID: 10.1016/j.chemosphere.2007.05.084)
Kim, K.-H., Jahan, S. A., Kabir, E., & Brown, R. J. C. (2013). A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environment International, 60, 71–80. https://doi.org/10.1016/j.envint.2013.07.019. (PMID: 10.1016/j.envint.2013.07.019)
King, A., Readman, J. W., & Zhou, J. L. (2004). Dynamic behaviour of polycyclic aromatic hydrocarbons in Brighton marina, UK. Marine Pollution Bulletin, 48(3–4), 229–239. (PMID: 10.1016/S0025-326X(03)00393-X)
Kukučka, P., Klánová, J., Sánka, M., & Holoubek, I. (2009). Soil burdens of persistent organic pollutants–Their levels, fate and risk. Part II. Are there any trends in PCDD/F levels in mountain soils? Environmental Pollution, 157(12), 3255–3263. (PMID: 10.1016/j.envpol.2009.05.029)
Manoli, E., Kouras, A., & Samara, C. (2004). Profile analysis of ambient and source emitted particle-bound polycyclic aromatic hydrocarbons from three sites in northern Greece. Chemosphere, 56(9), 867–878. (PMID: 10.1016/j.chemosphere.2004.03.013)
MAP. (1989). State of the Mediterranean marine environment. In Mediterranean Action Plan, UNEP, Athens, Technical Report Series.
McDaniel, M., & Zielinska, B. (2015). Polycyclic aromatic hydrocarbons in the snowpack and surface water in Blackwood Canyon, Lake Tahoe, CA, as Related to Snowmobile Activity. Polycyclic Aromatic Compounds, 35(1, SI), 102–119. https://doi.org/10.1080/10406638.2014.935449. (PMID: 10.1080/10406638.2014.935449)
McVeety, B. D., & Hites, R. A. (1988). Atmospheric deposition of polycyclic aromatic hydrocarbons to water surfaces: A mass balance approach. Atmospheric Environment (1967), 22(3), 511–536. (PMID: 10.1016/0004-6981(88)90196-5)
Mostert, M. M. R., Ayoko, G. A., & Kokot, S. (2010). Application of chemometrics to analysis of soil pollutants. TrAC Trends in Analytical Chemistry, 29(5), 430–445. (PMID: 10.1016/j.trac.2010.02.009)
Moyo, S., McCrindle, R., Mokgalaka, N., Myburgh, J., & Mujuru, M. (2013). Source apportionment of polycyclic aromatic hydrocarbons in sediments from polluted rivers. Pure and Applied Chemistry, 85(12), 2175–2196. https://doi.org/10.1351/PAC-CON-12-10-08. (PMID: 10.1351/PAC-CON-12-10-08)
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., … & Wagner, H. (2012). vegan: Community ecology package. Retrieved July 7, 2023, from http://cran.r-project.org/package=vegan.
Pang, S. Y., Suratman, S., Latif, M. T., Khan, M. F., Simoneit, B. R. T., & Mohd Tahir, N. (2022). Polycyclic aromatic hydrocarbons in coastal sediments of Southern Terengganu, South China Sea, Malaysia: Source assessment using diagnostic ratios and multivariate statistic. Environmental Science and Pollution Research, 29(11), 15849–15862. (PMID: 10.1007/s11356-021-16762-6)
Poma, G., Salerno, F., Roscioli, C., Novati, S., & Guzzella, L. (2017). Persistent organic pollutants in sediments of high-altitude alpine ponds within Stelvio National Park, Italian Alps. Inland Waters, 7(1), 34–44. https://doi.org/10.1080/20442041.2017.1294345. (PMID: 10.1080/20442041.2017.1294345)
Ravindra, K., Sokhi, R., & Vangrieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmospheric Environment, 42(13), 2895–2921. https://doi.org/10.1016/j.atmosenv.2007.12.010. (PMID: 10.1016/j.atmosenv.2007.12.010)
Redlands, C. E. S. R. I. (2011). ArcGIS Desktop: Release 10.
Rocha, A. C., & Palma, C. (2019). Source identification of polycyclic aromatic hydrocarbons in soil sediments: Application of different methods. Science of the Total Environment, 652, 1077–1089. (PMID: 10.1016/j.scitotenv.2018.10.014)
Santos, M. M. D., Brehm, F. D. A., Filippe, T. C., Reichert, G., & Azevedo, J. C. R. D. (2017). PAHs diagnostic ratios for the distinction of petrogenic and pirogenic sources: Applicability in the Upper Iguassu Watershed-Parana, Brazil. Rbrh, 22.
Stogiannidis, E., & Laane, R. (2015). Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: An overview of possibilities. Reviews of Environmental Contamination and Toxicology, 49–133.
Tobiszewski, M., & Namieśnik, J. (2012). PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution, 162, 110–119. https://doi.org/10.1016/j.envpol.2011.10.025. (PMID: 10.1016/j.envpol.2011.10.025)
Tobiszewski, M. (2014). Application of diagnostic ratios of PAHs to characterize the pollution emission sources. Proceedings of the 5th International Conference on Environmental Science and Technology. IPCBEE, 69, 41–44.
Turgut, C., Mazmanci, M. A., Mazmanci, B., Yalçin, M., Karakuş, P. K., Atatanir, L., & Schramm, K.-W. (2017). Polycyclic aromatic hydrocarbons (PAHs) determined by pine needles and semipermeable membrane devices along an altitude profile in Taurus Mountains, Turkey. Environmental Science and Pollution Research, 24(8), 7077–7087. (PMID: 10.1007/s11356-017-8363-4)
Usenko, S., Landers, D. H., Appleby, P. G., & Simonich, S. L. (2007). Current and historical deposition of PBDEs, pesticides, PCBs, and PAHs to rocky mountain national park. Environmental Science and Technology, 41, 7235–7241. https://doi.org/10.1021/es0710003. (PMID: 10.1021/es0710003)
van Drooge, B. L., López, J., Fernández, P., Grimalt, J. O., & Stuchlik, E. (2011). Polycyclic aromatic hydrocarbons in lake sediments from the High Tatras. Environmental Pollution, 159(5), 1234–1240. (PMID: 10.1016/j.envpol.2011.01.035)
Viñas, L., Angeles Franco, M., Antonio Soriano, J., José González, J., Pon, J., & Albaigés, J. (2010). Sources and distribution of polycyclic aromatic hydrocarbons in sediments from the Spanish northern continental shelf. Assessment of spatial and temporal trends. Environmental Pollution, 158(5), 1551–1560. https://doi.org/10.1016/j.envpol.2009.12.023. (PMID: 10.1016/j.envpol.2009.12.023)
Wang, X., Yang, H., Gong, P., Zhao, X., Wu, G., Turner, S., & Yao, T. (2010). One century sedimentary records of polycyclic aromatic hydrocarbons, mercury and trace elements in the Qinghai Lake, Tibetan Plateau. Environmental Pollution, 158, 3065–3070. https://doi.org/10.1016/j.envpol.2010.06.034. (PMID: 10.1016/j.envpol.2010.06.034)
Wang, Z., Yang, C., Brown, C., Hollebone, B., & Landriault, M. (2008). A case study: Distinguishing pyrogenic hydrocarbons from petrogenic hydrocarbons. International Oil Spill Conference, 2008(1), 311–320. (PMID: 10.7901/2169-3358-2008-1-311)
Wilcke, W., Amelung, W., Krauss, M., Martius, C., Bandeira, A., & Garcia, M. (2003). Polycyclic aromatic hydrocarbon (PAH) patterns in climatically different ecological zones of Brazil. Organic Geochemistry, 34(10), 1405–1417. https://doi.org/10.1016/S0146-6380(03)00137-2. (PMID: 10.1016/S0146-6380(03)00137-2)
Yan, B., Abrajano, T. A., Bopp, R. F., Chaky, D. A., Benedict, L. A., & Chillrud, S. N. (2005). Molecular tracers of saturated and polycyclic aromatic hydrocarbon inputs into Central Park Lake, New York City. Environmental Science & Technology, 39(18), 7012–7019. https://doi.org/10.1021/es0506105. (PMID: 10.1021/es0506105)
Yang, R., Zhou, R., Xie, T., & Jing, C. (2018). Historical record of anthropogenic polycyclic aromatic hydrocarbons in a lake sediment from the southern Tibetan Plateau. Environmental Geochemistry and Health, 40(5), 1899–1906. https://doi.org/10.1007/s10653-017-9956-z. (PMID: 10.1007/s10653-017-9956-z)
Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33(4), 489–515. https://doi.org/10.1016/S0146-6380(02)00002-5. (PMID: 10.1016/S0146-6380(02)00002-5)
Zhang, W., Zhang, S., Wan, C., Yue, D., Ye, Y., & Wang, X. (2008). Source diagnostics of polycyclic aromatic hydrocarbons in urban road runoff, dust, rain and canopy throughfall. Environmental Pollution, 153(3), 594–601. https://doi.org/10.1016/j.envpol.2007.09.004. (PMID: 10.1016/j.envpol.2007.09.004)
Zhao, Y., Hong, B., Fan, Y., Wen, M., & Han, X. (2014). Accurate analysis of polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs homologs in crude oil for improving the gas chromatography/mass spectrometry performance. Ecotoxicology and Environmental Safety, 100, 242–250. (PMID: 10.1016/j.ecoenv.2013.10.018)
Zhou, R., Yang, R., & Jing, C. (2018). Polycyclic aromatic hydrocarbons in soils and lichen from the western Tibetan Plateau: Concentration profiles, distribution and its influencing factors. Ecotoxicology and Environmental Safety, 152, 151–158. https://doi.org/10.1016/j.ecoenv.2018.01.009. (PMID: 10.1016/j.ecoenv.2018.01.009) - Grant Information: 120Y372 Türkiye Bilimsel ve Teknolojik Araştırma Kurumu; GEBİP Programme Türkiye Bilimler Akademisi
- Contributed Indexing: Keywords: Alpine lakes; Central Taurus Mountains; Polycyclic aromatic hydrocarbon; Sediment
- الرقم المعرف: 0 (Polycyclic Aromatic Hydrocarbons)
0 (Water Pollutants, Chemical) - الموضوع: Date Created: 20230720 Date Completed: 20230724 Latest Revision: 20230810
- الموضوع: 20230810
- الرقم المعرف: 10.1007/s10661-023-11577-z
- الرقم المعرف: 37470877
- المصدر:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login
حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.