Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Arsenic level in drinking water, its correlation with water quality parameters, and associated health risks.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Springer Country of Publication: Netherlands NLM ID: 8508350 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2959 (Electronic) Linking ISSN: 01676369 NLM ISO Abbreviation: Environ Monit Assess Subsets: MEDLINE
    • بيانات النشر:
      Publication: 1998- : Dordrecht : Springer
      Original Publication: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-
    • الموضوع:
    • نبذة مختصرة :
      This study aimed to evaluate the occurrence and likelihood of health risks related to arsenic in drinking water of all counties of the Hamadan province in the northwest of Iran. In this work, 370 samples were collected from all of the water resources of urban and rural regions, during 5 years (2017 to 2021). Oracle Crystal Ball software was used to perform the Monte Carlo simulation and investigate the potential health risks. According to the results, the average values of arsenic in the nine counties were in the order Kabudarahang (40.1 ppb), Malayer (13.1 ppb), Nahavand (6.1 ppb), Bahar (2.05 ppb), Famenin (0.41 ppb), Asadabad (0.36 ppb), Tuyserkan (0.28 ppb), Razan (0.14 ppb), and Hamadan (< 0.1 ppb). The highest concentration of arsenic occurred in Kabudarahang with a maximum value of 185 ppb. In the spring season, the average concentration of the cations, including calcium, magnesium, sodium, lead, cadmium, and chromium, obtained 109.51 mg/l, 44.67 mg/l, 20.50 mg/l, 88.76 ppb, 0.31 ppb, and 0.02 ppb, respectively. Based on the Delphi classification, the P 90% of oral lifetime cancer risk, in Hamadan province, were within level II (low risk) to VII (extremely high risk). The risk analysis revealed there was a possible carcinogenic risk to humans from oral exposure to As-contaminated groundwater, especially in Kabudarahang county. Therefore, there is an urgent need for management and precise measures in contaminated areas to reduce and prevent the adverse health effects of arsenic.
      (© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
    • References:
      Abbasnejad, A., Mirzaie, A., Derakhshani, R., & Esmaeilzadeh, E. (2013). Arsenic in groundwaters of the alluvial aquifer of Bardsir plain, SE Iran. Environmental Earth Sciences, 69(8), 2549–2557. (PMID: 10.1007/s12665-012-2079-z)
      Ahmad, A., & Bhattacharya, P. (2019). Arsenic in drinking water: Is 10 μg/L a safe limit? Current Pollution Reports, 5(1), 1–3. (PMID: 10.1007/s40726-019-0102-7)
      Aleseyyed, S. B., Norouzi, H., & Khodabakhshi, M. (2018). Evaluation of heavy metals in drinking water resources in urban and rural areas of Hamadan province in 2016. Journal of Environmental Health and Sustainable Development, 3(1), 448–453.
      Alidadi, H., Sany, S. B. T., Oftadeh, B. Z. G., Mohamad, T., Shamszade, H., & Fakhari, M. (2019). Health risk assessments of arsenic and toxic heavy metal exposure in drinking water in northeast Iran. Environmental Health and Preventive Medicine, 24(1), 1–17. (PMID: 10.1186/s12199-019-0812-x)
      Asare-Donkor, N. K., Boadu, T. A., & Adimado, A. A. (2016). Evaluation of groundwater and surface water quality and human risk assessment for trace metals in human settlements around the Bosomtwe Crater Lake in Ghana. Springerplus, 5(1), 1–19. (PMID: 10.1186/s40064-016-3462-0)
      Barzegar, R., Asghari Moghaddam, A., & Kazemian, N. (2015). Assessment of heavy metals concentrations with emphasis on arsenic in the Tabriz plain aquifers, Iran. Environmental Earth Sciences, 74(1), 297–313. (PMID: 10.1007/s12665-015-4123-2)
      Bhattacharya, P., Ahmed, K. M., Hasan, M. A., Broms, S., Fogelström, J., Jacks, G., & Routh, J. (2006). Mobility of arsenic in groundwater in a part of Brahmanbaria district, NE Bangladesh. Managing arsenic in the environment: from soil to human health (pp. 95–115). Melbourne, Australia: CSIRO Publishing.
      Bibi, S., Farooqi, A., Ramzan, M., & Javed, A. (2015). Health risk of arsenic in the alluvial aquifers of Lahore and Raiwind, Punjab Province, Pakistan: An investigation for safer well water. Toxicological & Environmental Chemistry, 97(7), 888–907. (PMID: 10.1080/02772248.2015.1066175)
      Chakraborti, D., Rahman, M. M., Murrill, M., Das, R., Patil, S., Sarkar, A., & Das, K. K. (2013). Environmental arsenic contamination and its health effects in a historic gold mining area of the Mangalur greenstone belt of Northeastern Karnataka, India. Journal of Hazardous Materials, 262, 1048–1055. (PMID: 10.1016/j.jhazmat.2012.10.002)
      Dawoud, E., & Purucker, S. (1996). Quantitative uncertainty analysis of superfund residential risk pathway models for soil and groundwater: White paper (p. 6). Lockheed Martin Energy Systems Inc.
      Duan, Y., Gan, Y., Wang, Y., Deng, Y., Guo, X., & Dong, C. (2015). Temporal variation of groundwater level and arsenic concentration at Jianghan Plain, central China. Journal of Geochemical Exploration, 149, 106–119. (PMID: 10.1016/j.gexplo.2014.12.001)
      Dyba, T., Randi, G., Bray, F., Martos, C., Giusti, F., Nicholson, N., & Dimitrova, N. (2021). The European cancer burden in 2020: Incidence and mortality estimates for 40 countries and 25 major cancers. European Journal of Cancer, 157, 308–347. (PMID: 10.1016/j.ejca.2021.07.039)
      Farooq, M. A., Islam, F., Ali, B., Najeeb, U., Mao, B., Gill, R. A., Zhou, & W. (2016). Arsenic toxicity in plants: cellular and molecular mechanisms of its transport and metabolism. Environmental and Experimental Botany, 132, 42–52. (PMID: 10.1016/j.envexpbot.2016.08.004)
      Farooqi, A., Masuda, H., & Firdous, N. (2007). Toxic fluoride and arsenic contaminated water in Lahore and Kasur districts. Punjab, Pakistan and possible contaminant sources.
      Federation, W. E., & Association, A. (2005). Standard methods for the examination of water and wastewater (p. 21). American Public Health Association (APHA).
      Ghobadi, A., Cheraghi, M., Sobhanardakani, S., Lorestani, B., & Merrikhpour, H. (2020). Hydrogeochemical characteristics, temporal, and spatial variations for evaluation of groundwater quality of Hamedan-Bahar Plain as a major agricultural region, West of Iran. Environmental Earth Sciences, 79(18), 1–16.
      Halim, M., Majumder, R., Nessa, S., Oda, K., Hiroshiro, Y., Saha, B., Jinno, & K. (2009). Groundwater contamination with arsenic in Sherajdikhan, Bangladesh: geochemical and hydrological implications. Environmental Geology, 58(1), 73–84. (PMID: 10.1007/s00254-008-1493-8)
      Halimi, L., Bagheri, N., Hoseini, B., Hashtarkhani, S., Goshayeshi, L., & Kiani, B. (2020). Spatial analysis of colorectal cancer incidence in Hamadan Province, Iran: A retrospective cross-sectional study. Applied Spatial Analysis and Policy, 13(2), 293–303. (PMID: 10.1007/s12061-019-09303-9)
      Hamidian, A. H., Razeghi, N., Zhang, Y., & Yang, M. (2019). Spatial distribution of arsenic in groundwater of Iran, a review. Journal of Geochemical Exploration, 201, 88–98. (PMID: 10.1016/j.gexplo.2019.03.014)
      He, X., Wu, J., & He, S. (2019). Hydrochemical characteristics and quality evaluation of groundwater in terms of health risks in Luohe aquifer in Wuqi County of the Chinese Loess Plateau, northwest China. Human and Ecological Risk Assessment: An International Journal, 25(1–2), 32–51. (PMID: 10.1080/10807039.2018.1531693)
      Katsoyiannis, I. A., Hug, S. J., Ammann, A., Zikoudi, A., & Hatziliontos, C. (2007). Arsenic speciation and uranium concentrations in drinking water supply wells in Northern Greece: Correlations with redox indicative parameters and implications for groundwater treatment. Science of the Total Environment, 383(1–3), 128–140. (PMID: 10.1016/j.scitotenv.2007.04.035)
      Keshavarzi, B., Seradj, A., Akbari, Z., Moore, F., Shahraki, A. R., & Pourjafar, M. (2015). Chronic arsenic toxicity in sheep of Kurdistan province, Western Iran. Archives of Environmental Contamination and Toxicology, 69(1), 44–53. (PMID: 10.1007/s00244-015-0157-4)
      Li, F., Qiu, Z., Zhang, J., Liu, C., Cai, Y., & Xiao, M. (2017). Spatial distribution and fuzzy health risk assessment of trace elements in surface water from Honghu Lake. International Journal of Environmental Research and Public Health, 14(9), 1011. (PMID: 10.3390/ijerph14091011)
      Li, R., Kuo, Y.-M., Liu, W.-W., Jang, C.-S., Zhao, E., & Yao, L. (2018). Potential health risk assessment through ingestion and dermal contact arsenic-contaminated groundwater in Jianghan Plain, China. Environmental Geochemistry and Health, 40(4), 1585–1599. (PMID: 10.1007/s10653-018-0073-4)
      Machado, I., Falchi, L., Bühl, V., & Mañay, N. (2020). Arsenic levels in groundwater and its correlation with relevant inorganic parameters in Uruguay: A medical geology perspective. Science of the Total Environment, 721, 137787. (PMID: 10.1016/j.scitotenv.2020.137787)
      Means, B. (1989). Risk-assessment guidance for superfund (Vol. 1). Human health evaluation manual. Part A. Interim report (Final) (No. PB-90-155581/XAB; EPA-540/1-89/002). Environmental Protection Agency, Washington, DC (USA). Office of Solid Waste and Emergency Response.
      Mochizuki, H., Phyu, K. P., Aung, M. N., Zin, P. W., Yano, Y., Myint, M. Z., & Thant, K. Z. (2019). Peripheral neuropathy induced by drinking water contaminated with low-dose arsenic in Myanmar. Environmental Health and Preventive Medicine, 24(1), 1–10. (PMID: 10.1186/s12199-019-0781-0)
      Mosaferi, M., Nemati, S., Armanfar, F., Nadiri, A., & Mohammadi, A. (2017a). Geogenic arsenic contamination in northwest of Iran; role of water basin hydrochemistry. Journal of Environmental Health and Sustainable Development, 2(1), 205–216.
      Mosaferi, M., Shakerkhatibi, M., Dastgiri, S., Jafar-abadi, M. A., Khataee, A., & Sheykholeslami, S. (2017b). Natural arsenic pollution and hydrochemistry of drinking water of an urban part of Iran. Avicenna Journal of Environmental Health Engineering, 1(1), 7–16.
      Nazari, Y., & Abbasnejad, A. (2015). Determining the origin and distribution of arsenic in groundwater in the Rayen Plain (southeast of Kerman) using statistical techniques. Journal of Geoscience, 24(94), 117–128.
      Niazi, N. K., Bibi, I., Shahid, M., Ok, Y. S., Shaheen, S. M., Rinklebe, J., & Nawaz, M. F. (2018). Arsenic removal by Japanese oak wood biochar in aqueous solutions and well water: Investigating arsenic fate using integrated spectroscopic and microscopic techniques. Science of the Total Environment, 621, 1642–1651. (PMID: 10.1016/j.scitotenv.2017.10.063)
      Ning, R. Y. (2005). Arsenic in natural waters. Water Encyclopedia, 1, 81–83.
      Orosun, M. M. (2021). Assessment of arsenic and its associated health risks due to mining activities in parts of North-central Nigeria: Probabilistic approach using Monte Carlo. Journal of Hazardous Materials, 412, 125262. (PMID: 10.1016/j.jhazmat.2021.125262)
      Rasool, A., Xiao, T., Farooqi, A., Shafeeque, M., Liu, Y., Kamran, M. A., & Eqani, S. A. M. A. S. (2017). Quality of tube well water intended for irrigation and human consumption with special emphasis on arsenic contamination at the area of Punjab, Pakistan. Environmental Geochemistry and Health, 39(4), 847–863. (PMID: 10.1007/s10653-016-9855-8)
      Rathi, B. S., & Kumar, P. S. (2021). A review on sources, identification and treatment strategies for the removal of toxic arsenic from water system. Journal of Hazardous Materials, 418, 126299. (PMID: 10.1016/j.jhazmat.2021.126299)
      Sadeghi, F., Nasseri, S., Mosaferi, M., Nabizadeh, R., Yunesian, M., & Mesdaghinia, A. (2017). Statistical analysis of arsenic contamination in drinking water in a city of Iran and its modeling using GIS. Environmental Monitoring and Assessment, 189(5), 1–12. (PMID: 10.1007/s10661-017-5912-8)
      Saha, N., & Rahman, M. S. (2020). Groundwater hydrogeochemistry and probabilistic health risk assessment through exposure to arsenic-contaminated groundwater of Meghna floodplain, central-east Bangladesh. Ecotoxicology and Environmental Safety, 206, 111349. (PMID: 10.1016/j.ecoenv.2020.111349)
      Salnikow, K., & Zhitkovich, A. (2008). Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: Nickel, arsenic, and chromium. Chemical Research in Toxicology, 21(1), 28–44. (PMID: 10.1021/tx700198a)
      Samiee, F., Leili, M., Faradmal, J., Torkshavand, Z., & Asadi, G. (2019). Exposure to arsenic through breast milk from mothers exposed to high levels of arsenic in drinking water: Infant risk assessment. Food Control, 106, 106669. (PMID: 10.1016/j.foodcont.2019.05.034)
      Savarimuthu, X., Hira-Smith, M. M., Yuan, Y., von Ehrenstein, O. S., Das, S., Ghosh, N., & Smith, A. H. (2006). Seasonal variation of arsenic concentrations in tubewells in West Bengal, India. Journal of Health, Population, and Nutrition, 24(3), 277.
      Shah, A. H., Shahid, M., Khalid, S., Shabbir, Z., Bakhat, H. F., Murtaza, B., & Nasim, W. (2020). Assessment of arsenic exposure by drinking well water and associated carcinogenic risk in peri-urban areas of Vehari, Pakistan. Environmental Geochemistry and Health, 42(1), 121–133. (PMID: 10.1007/s10653-019-00306-6)
      Shaji, E., Santosh, M., Sarath, K., Prakash, P., Deepchand, V., & Divya, B. (2021). Arsenic contamination of groundwater: A global synopsis with focus on the Indian Peninsula. Geoscience Frontiers, 12(3), 101079. (PMID: 10.1016/j.gsf.2020.08.015)
      Shakoor, M. B., Bibi, I., Niazi, N. K., Shahid, M., Nawaz, M. F., Farooqi, A., & Lüttge, A. (2018). The evaluation of arsenic contamination potential, speciation and hydrogeochemical behaviour in aquifers of Punjab, Pakistan. Chemosphere, 199, 737–746. (PMID: 10.1016/j.chemosphere.2018.02.002)
      Tabassum, R. A., Shahid, M., Dumat, C., Niazi, N. K., Khalid, S., Shah, N. S., & Khalid, S. (2019). Health risk assessment of drinking arsenic-containing groundwater in Hasilpur, Pakistan: effect of sampling area, depth, and source. Environmental Science and Pollution Research, 26(20), 20018–20029. (PMID: 10.1007/s11356-018-1276-z)
      Thundiyil, J. G., Yuan, Y., Smith, A. H., & Steinmaus, C. (2007). Seasonal variation of arsenic concentration in wells in Nevada. Environmental Research, 104(3), 367–373. (PMID: 10.1016/j.envres.2007.02.007)
      Wang, Y., Zhu, G., Engel, B., & Wu, Y. (2020). Probabilistic human health risk assessment of arsenic under uncertainty in drinking water sources in Jiangsu Province, China. Environmental Geochemistry and Health, 42(7), 2023–2037. (PMID: 10.1007/s10653-019-00476-3)
      Wei, M., Wu, J., Li, W., Zhang, Q., Su, F., & Wang, Y. (2021). Groundwater geochemistry and its impacts on groundwater arsenic enrichment, variation, and health risks in Yongning County, Yinchuan Plain of northwest China. Exposure and Health, 1–20.
      Yim, S. R., Park, G. Y., Lee, K. W., Chung, M.-S., & Shim, S.-M. (2017). Determination of total arsenic content and arsenic speciation in different types of rice. Food Science and Biotechnology, 26(1), 293–298. (PMID: 10.1007/s10068-017-0039-9)
    • Grant Information:
      140009308067 Vice Chancellor for Research and Technology, Hamadan University of Medical Sciences; 140009308067 Vice Chancellor for Research and Technology, Hamadan University of Medical Sciences; 140009308067 Vice Chancellor for Research and Technology, Hamadan University of Medical Sciences; 140009308067 Vice Chancellor for Research and Technology, Hamadan University of Medical Sciences; 140009308067 Vice Chancellor for Research and Technology, Hamadan University of Medical Sciences
    • Contributed Indexing:
      Keywords: Arsenic; GIS; Iran; Lifetime cancer risk
    • الرقم المعرف:
      0 (Drinking Water)
      N712M78A8G (Arsenic)
      00BH33GNGH (Cadmium)
    • الموضوع:
      Date Created: 20230628 Date Completed: 20230630 Latest Revision: 20230630
    • الموضوع:
      20230630
    • الرقم المعرف:
      10.1007/s10661-023-11486-1
    • الرقم المعرف:
      37380884