Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Sef1, rapid-cycling Brassica napus for large-scale functional genome research in a controlled environment.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Springer Country of Publication: Germany NLM ID: 0145600 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-2242 (Electronic) Linking ISSN: 00405752 NLM ISO Abbreviation: Theor Appl Genet Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: Berlin, New York, Springer
    • الموضوع:
    • نبذة مختصرة :
      Key Message: We demonstrated a short-cycle B. napus line, Sef1, with a highly efficient and fast transformation system, which has great potential in large-scale functional gene analysis in a controlled environment. Rapeseed (Brassica napus L.) is an essential oil crop that accounts for a considerable share of global vegetable oil production. Nonetheless, studies on functional genes of B. napus are lagging behind due to the complicated genome and long growth cycle, this is largely due to the limited availability of gene analysis and modern genome editing-based molecular breeding. In this study, we demonstrated a short-cycle semi-winter-type Brassica napus 'Sef1' with very early-flowering and dwarf phenotype, which has great potential in large-scale indoor planting. Through the construction of an F 2 population of Sef1 and Zhongshuang11, bulked segregant analysis (BSA) combined with the rape Bnapus50K SNP chip assay method was used to identify the early-flowering genes in Sef1, and a mutation in BnaFT.A02 was identified as a major locus significantly affecting the flowering time in Sef1. To further investigate the mechanism of early flowering in Sef1 and discover its potential in gene function analysis, an efficient Agrobacterium-mediated transformation system was established. The average transformation efficiency with explants of hypocotyls and cotyledons was 20.37% and 12.8%, respectively, and the entire transformation process took approximately 3 months from explant preparation to seed harvest of transformed plants. This study demonstrates the great potential of Sef1 for large-scale functional gene analysis.
      (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Bailey-Serres J, Parker JE, Ainsworth EA, Oldroyd GED, Schroeder JI (2019) Genetic strategies for improving crop yields. Nature 575:109–118. (PMID: 31695205702468210.1038/s41586-019-1679-0)
      Bayer PE, Hurgobin B, Golicz AA, Chan CK, Yuan Y, Lee H, Renton M, Meng J, Li R, Long Y, Zou J, Bancroft I, Chalhoub B, King GJ, Batley J, Edwards D (2017) Assembly and comparison of two closely related Brassica napus genomes. Plant Biotechnol J 15:1602–1610. (PMID: 28403535569805210.1111/pbi.12742)
      Bhalla PL, Singh MB (2008) Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea. Nat Protoc 3:181–189. (PMID: 1827451910.1038/nprot.2007.527)
      Braatz J, Harloff HJ, Mascher M, Stein N, Himmelbach A, Jung C (2017) CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiol 174:935–942. (PMID: 28584067546205710.1104/pp.17.00426)
      Cai F, Shao C, Zhang Y, Shi G, Bao Z, Bao M, Zhang J (2021) Two FD homologs from London plane (Platanus acerifolia) are associated with floral initiation and flower morphology. Plant Sci 310:110971. (PMID: 3431558910.1016/j.plantsci.2021.110971)
      Cardoza V, Stewart CN Jr (2006) Canola (Brassica napus L.). Methods Mol Biol 343:257–266. (PMID: 16988350)
      Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Correa M, Da Silva C, Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier MC, Fan G, Renault V, Bayer PE, Golicz AA, Manoli S, Lee TH, Thi VH, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom CH, Wang X, Canaguier A, Chauveau A, Berard A, Deniot G, Guan M, Liu Z, Sun F, Lim YP, Lyons E, Town CD, Bancroft I, Wang X, Meng J, Ma J, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury JM, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou Y, Hua W, Sharpe AG, Paterson AH, Guan C, Wincker P (2014) Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953. (PMID: 2514629310.1126/science.1253435)
      Chen M, Penfield S (2018) Feedback regulation of COOLAIR expression controls seed dormancy and flowering time. Science 360:1014–1017. (PMID: 2985368410.1126/science.aar7361)
      Fan F, Li N, Chen Y, Liu X, Sun H, Wang J, He G, Zhu Y, Li S (2017) Development of elite BPH-resistant wide-spectrum restorer lines for three and two line hybrid rice. Front Plant Sci 8:986. (PMID: 28638401546136910.3389/fpls.2017.00986)
      Fornara F, de Montaigu A, Coupland G (2010) SnapShot: control of flowering in Arabidopsis. Cell 141:550. (PMID: 2043499110.1016/j.cell.2010.04.024)
      Freytes SN, Canelo M, Cerdan PD (2021) Regulation of flowering time: when and where? Curr Opin Plant Biol 63:102049. (PMID: 3397515310.1016/j.pbi.2021.102049)
      Fu W, Shen Y, Hao J, Wu J, Ke L, Wu C, Huang K, Luo B, Xu M, Cheng X, Zhou X, Sun J, Xing C, Sun Y (2015) Acyl-CoA N-acyltransferase influences fertility by regulating lipid metabolism and jasmonic acid biogenesis in cotton. Sci Rep 5:11790. (PMID: 26134787448876210.1038/srep11790)
      Gacek K, Bartkowiak-Broda I, Batley J (2018) Genetic and molecular regulation of seed storage proteins (SSPs) to improve protein nutritional value of oilseed rape (Brassica napus L.) Seeds. Front Plant Sci 9:890. (PMID: 30013586603623510.3389/fpls.2018.00890)
      Gupta A, Rico-Medina A, Cano-Delgado AI (2020) The physiology of plant responses to drought. Science 368:266–269. (PMID: 3229994610.1126/science.aaz7614)
      He Y, Chen T, Zeng X (2020) Genetic and epigenetic understanding of the seasonal timing of flowering. Plant Commun 1:100008. (PMID: 3340454710.1016/j.xplc.2019.100008)
      Jin Q, Gao G, Guo C, Yang T, Li G, Song J, Zheng N, Yin S, Yi L, Li Z, Ge X, King GJ, Wang J, Zhou G (2022) Transposon insertions within alleles of BnaFT.A2 are associated with seasonal crop type in rapeseed. Theor Appl Genet 135:3469–3483. (PMID: 3599778610.1007/s00122-022-04193-x)
      Jing Y, Guo Q, Lin R (2019) The chromatin-remodeling factor PICKLE antagonizes polycomb repression of FT to promote flowering. Plant Physiol 181:656–668. (PMID: 31377725677685810.1104/pp.19.00596)
      Karimi M, Inze D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195. (PMID: 1199282010.1016/S1360-1385(02)02251-3)
      Ke L, Lei W, Yang W, Wang J, Gao J, Cheng J, Sun Y, Fan Z, Yu D (2020) Genome-wide identification of cold responsive transcription factors in Brassica napus L. BMC Plant Biol 20:62. (PMID: 32028890700613410.1186/s12870-020-2253-5)
      Lee J, Lee I (2010) Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot 61:2247–2254. (PMID: 2041352710.1093/jxb/erq098)
      Lee H, Chawla HS, Obermeier C, Dreyer F, Abbadi A, Snowdon R (2020) Chromosome-scale assembly of winter oilseed rape Brassica napus. Front Plant Sci 11:496. (PMID: 32411167720232710.3389/fpls.2020.00496)
      Liu M, Fan F, He S, Guo Y, Chen G, Li N, Li N, Yuan H, Si F, Yang F, Li S (2022) Creation of elite rice with high-yield, superior-quality and high resistance to brown planthopper based on molecular design. Rice 15:17. (PMID: 35290527892434210.1186/s12284-022-00563-7)
      Lu K, Wei L, Li X, Wang Y, Wu J, Liu M, Zhang C, Chen Z, Xiao Z, Jian H, Cheng F, Zhang K, Du H, Cheng X, Qu C, Qian W, Liu L, Wang R, Zou Q, Ying J, Xu X, Mei J, Liang Y, Chai YR, Tang Z, Wan H, Ni Y, He Y, Lin N, Fan Y, Sun W, Li NN, Zhou G, Zheng H, Wang X, Paterson AH, Li J (2019) Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nat Commun 10:1154. (PMID: 30858362641195710.1038/s41467-019-09134-9)
      Luo X, Chen T, Zeng X, He D, He Y (2019) Feedback Regulation of FLC by FLOWERING LOCUS T (FT) and FD through a 5′FLC promoter region in Arabidopsis. Mol Plant 12:285–288. (PMID: 3068538110.1016/j.molp.2019.01.013)
      Maheshwari P, Selvaraj G, Kovalchuk I (2011) Optimization of Brassica napus (canola) explant regeneration for genetic transformation. New Biotechnol 29:144–155. (PMID: 10.1016/j.nbt.2011.06.014)
      Mehraj H, Akter A, Miyaji N, Miyazaki J, Shea DJ, Fujimoto R, Doullah MA (2020) Genetics of clubroot and fusarium wilt disease resistance in Brassica vegetables: the application of marker assisted breeding for disease resistance. Plants 9:726. (PMID: 32526827735593510.3390/plants9060726)
      Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956. (PMID: 1033047814422610.1105/tpc.11.5.949)
      Naeem M, Ali Z, Khan A, Sami Ul A, Chaudhary HJ, Ashraf J, Baloch FS (2022) Omics: a tool for resilient rice genetic improvement strategies. Mol Biol Rep 49:5075–5088. (PMID: 3529875810.1007/s11033-022-07189-4)
      Peleman JD, van der Voort JR (2003) Breeding by design. Trends Plant Sci 8:330–334. (PMID: 1287801710.1016/S1360-1385(03)00134-1)
      Rahman M, Sun Z, McVetty PB, Li G (2008) High throughput genome-specific and gene-specific molecular markers for erucic acid genes in Brassica napus (L.) for marker-assisted selection in plant breeding. Theor Appl Genet 117:895–904. (PMID: 1863359210.1007/s00122-008-0829-9)
      Shamsudin NA, Swamy BP, Ratnam W, Sta Cruz MT, Raman A, Kumar A (2016) Marker assisted pyramiding of drought yield QTLs into a popular Malaysian rice cultivar, MR219. BMC Genet 17:30. (PMID: 26818269472914610.1186/s12863-016-0334-0)
      Shao C, Cai F, Zhang Y, Bao Z, Shi G, Bao M, Zhang J (2022) Regulation of alternative splicing of PaFT and PaFDL1, the FT and FD homologs in Platanus acerifolia. Gene 830:146506. (PMID: 3544723610.1016/j.gene.2022.146506)
      Sharma N, Geuten K, Giri BS, Varma A (2020) The molecular mechanism of vernalization in Arabidopsis and cereals: role of Flowering Locus C and its homologs. Physiol Plant 170:373–383. (PMID: 3262374910.1111/ppl.13163)
      Sparrow PA, Irwin JA (2015) Brassica oleracea and B. napus. Kan Wang (ed), Agrobacterium Protocols: Methods in Molecular Biology 1223: 287–297.
      Srikanth A, Schmid M (2011) Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 68:2013–2037. (PMID: 2161189110.1007/s00018-011-0673-y)
      Sun F, Fan G, Hu Q, Zhou Y, Guan M, Tong C, Li J, Du D, Qi C, Jiang L, Liu W, Huang S, Chen W, Yu J, Mei D, Meng J, Zeng P, Shi J, Liu K, Wang X, Wang X, Long Y, Liang X, Hu Z, Huang G, Dong C, Zhang H, Li J, Zhang Y, Li L, Shi C, Wang J, Lee SM, Guan C, Xu X, Liu S, Liu X, Chalhoub B, Hua W, Wang H (2017) The high-quality genome of Brassica napus cultivar “ZS11” reveals the introgression history in semi-winter morphotype. Plant J 92:452–468. (PMID: 2884961310.1111/tpj.13669)
      Sun Y, Zhang D, Zheng H, Wu Y, Mei J, Ke L, Yu D, Sun Y (2022) Biochemical and expression analyses revealed the involvement of proanthocyanidins and/or their derivatives in fiber pigmentation of Gossypium stocksii. Int J Mol Sci 23:1008. (PMID: 35055193877944310.3390/ijms23021008)
      Teng Y, Liang Y, Wang M, Mai H, Ke L (2019) Nitrate transporter 1.1 is involved in regulating flowering time via transcriptional regulation of Flowering Locus C in Arabidopsis thaliana. Plant Sci 284:30–36. (PMID: 3108487610.1016/j.plantsci.2019.04.002)
      Tudor EH, Jones DM, He Z, Bancroft I, Trick M, Wells R, Irwin JA, Dean C (2020) QTL-seq identifies BnaFT.A02 and BnaFLC.A02 as candidates for variation in vernalization requirement and response in winter oilseed rape (Brassica napus). Plant Biotechnol J 18:2466–2481. (PMID: 32452611768053110.1111/pbi.13421)
      Vollrath P, Chawla HS, Schiessl SV, Gabur I, Lee H, Snowdon RJ, Obermeier C (2021) A novel deletion in Flowering Locus T modulates flowering time in winter oilseed rape. Theor Appl Genet 134:1217–1231. (PMID: 33471161797341210.1007/s00122-021-03768-4)
      Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey MD, Asyraf Md, Hatta M, Hinchliffe A, Steed A, Reynolds D, Adamski NM, Breakspear A, Korolev A, Rayner T, Dixon LE, Riaz A, Martin W, Ryan M, Edwards D, Batley J, Raman H, Carter J, Rogers C, Domoney C, Moore G, Harwood W, Nicholson P, Dieters MJ, DeLacy IH, Zhou J, Uauy C, Boden SA, Park RF, Wulff BBH, Hickey LT (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4:23–29. (PMID: 2929237610.1038/s41477-017-0083-8)
      Wei L, Xiao M, Hayward A, Fu D (2013) Applications and challenges of next-generation sequencing in Brassica species. Planta 238:1005–1024. (PMID: 2406208610.1007/s00425-013-1961-6)
      Wu D, Liang Z, Yan T, Xu Y, Xuan L, Tang J, Zhou G, Lohwasser U, Hua S, Wang H, Chen X, Wang Q, Zhu L, Maodzeka A, Hussain N, Li Z, Li X, Shamsi IH, Jilani G, Wu L, Zheng H, Zhang G, Chalhoub B, Shen L, Yu H, Jiang L (2019) Whole-genome resequencing of a worldwide collection of rapeseed accessions reveals the genetic basis of ecotype divergence. Mol Plant 12:30–43. (PMID: 3047232610.1016/j.molp.2018.11.007)
      Xiao Q, Wang H, Song N, Yu Z, Imran K, Xie W, Qiu S, Zhou F, Wen J, Dai C, Ma C, Tu J, Shen J, Fu T, Yi B (2021) The Bnapus50K array: a quick and versatile genotyping tool for Brassica napus genomic breeding and research. G3 Bethesda 11:jkab241. (PMID: 34568935847397410.1093/g3journal/jkab241)
      Xuan L, Yan T, Lu L, Zhao X, Wu D, Hua S, Jiang L (2020) Genome-wide association study reveals new genes involved in leaf trichome formation in polyploid oilseed rape (Brassica napus L.). Plant, Cell Environ 43:675–691. (PMID: 3188932810.1111/pce.13694)
      Zeng D, Tian Z, Rao Y, Dong G, Yang Y, Huang L, Leng Y, Xu J, Sun C, Zhang G, Hu J, Zhu L, Gao Z, Hu X, Guo L, Xiong G, Wang Y, Li J, Qian Q (2017) Rational design of high-yield and superior-quality rice. Nat Plants 3:17031. (PMID: 2831905510.1038/nplants.2017.31)
      Zhu D, Rosa S, Dean C (2015) Nuclear organization changes and the epigenetic silencing of FLC during vernalization. J Mol Biol 427:659–669. (PMID: 2518063910.1016/j.jmb.2014.08.025)
      Zhu L, Zhao X, Xu Y, Wang Q, Wang H, Wu D, Jiang L (2020) Effect of germination potential on storage lipids and transcriptome changes in premature developing seeds of oilseed rape (Brassica napus L.). Theor Appl Genet 133:2839–2852. (PMID: 3261761610.1007/s00122-020-03636-7)
    • Grant Information:
      LY21C130008 Zhejiang Provincial Natural Science Foundation of China; 202001 Shanghai Agricultural Foundation
    • الموضوع:
      Date Created: 20230627 Date Completed: 20230629 Latest Revision: 20230712
    • الموضوع:
      20240628
    • الرقم المعرف:
      10.1007/s00122-023-04402-1
    • الرقم المعرف:
      37368122