Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Using multi-technology to characterize transboundary Hg pollution in the largest presently active Hg deposit in China.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Shi T;Shi T; Zhan P; Zhan P; Shen Y; Shen Y; Wang H; Wang H; Wu C; Wu C; Li J; Li J
  • المصدر:
    Environmental science and pollution research international [Environ Sci Pollut Res Int] 2023 Jul; Vol. 30 (34), pp. 82124-82141. Date of Electronic Publication: 2023 Jun 15.
  • نوع النشر :
    Journal Article
  • اللغة:
    English
  • معلومة اضافية
    • المصدر:
      Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
    • بيانات النشر:
      Publication: <2013->: Berlin : Springer
      Original Publication: Landsberg, Germany : Ecomed
    • الموضوع:
    • نبذة مختصرة :
      Active Hg mines are primary sources of Hg contamination in the environment of mining districts and surrounding areas. Alleviation of Hg pollution requires knowledge of pollution sources, migration, and transform pathways across various environmental media. Accordingly, the Xunyang Hg-Sb mine, the largest active Hg deposit in China, presently was selected as the study area. GIS, TIMA, EPMA, μ-XRF, TEM-EDS, and Hg stable isotopes were adopted to investigate the spatial distribution, mineralogical characteristics, in situ microanalysis, and pollution sources of Hg in the environment medium at the macro- and micro-levels. The total Hg concentration in samples showed a regional distribution, with higher levels in areas close to the mining operations. The in situ distribution of Hg in soil was mainly associated with the mineralogical phases of quartz, and Hg was also correlated with Sb and S. Hg was also found to be rich mainly in quartz minerals in the sediment and showed different distributions of Sb. Hg hotspots had S abundances and contained no Sb and O. The contributions from the anthropogenic sources to soil Hg were estimated to be 55.35%, among which 45.97% from unroasted Hg ore and 9.38% from tailing. Natural input of soil Hg due to pedogenic processes accounted for 44.65%. Hg in corn grain was mainly derived from the atmosphere. This study will provide a scientific basis for assessing the current environmental quality in this area and minimizing further impacts that affect the nearby environmental medium.
      (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Aslam MW, Meng B, Abdelhafiz MA, Liu J, Feng XB (2022) Unravelling the interactive effect of soil and atmospheric mercury influencing mercury distribution and accumulation in the soil-rice system. Sci Total Environ 803:149967.
      Balogh SJ, Tsui MTK, Blum JD, Matsuyama A, Woerndle GE, Yano S, Tada A (2015) Tracking the fate of mercury in the fish and bottom sediments of Minamata Bay, Japan, using stable mercury isotopes. Environ Sci Technol 49:5399–5406.
      Baptista-Salazar C, Hintelmann H, Biester H (2018) Distribution of mercury species and mercury isotope ratios in soils and river suspended matter of a mercury mining area. Environ Sci Processes Impacts 20(4):621–631.
      Bavec S, Biester H, Gosar M (2014) Urban sediment contamination in a former Hg mining district, Idrija, Slovenia. Environ Geochem Health 36(3):427–439.
      Bishop CA, Ng P, Pettit KE, Kennedy SW, Stegeman JJ, Norstrom RJ, Brooks RJ (1998) Environmental contamination and developmental abnormalities in eggs and hatchlings of the common snapping turtle (Chelydra serpentina serpentina) from the Great Lakes—St Lawrence River basin (1989–1991). Environ Pollut 101(1):143–156.
      Blum JD, Bergquist BA (2007) Reporting of variations in the natural isotopic composition of mercury. Anal Bioanal Chem 388:353–359.
      Chang C, Yin RS, Huang F, Sun GY, Mao K, Lei D, Zhang H (2021) Understanding the Bioaccumulation of Mercury in Rice Plants at the Wanshan Mercury Mine, China: Using Stable Mercury Isotopes. J. Geophys. Res-Bio. 126(2):1–9.
      Chen YJ, Zhang J, Zhang FX, Pirajno F, Li C (2004) Carlin and Carlin-like gold deposits in western Qinling mountains and their metallogenic time, tectonic setting and model. Geol Rev 50:134–152 (in Chinese).
      Chen X, Zheng LG, Sun RY, Liu SK, Li C, Chen YC, Xu YF (2022) Mercury in sediment reflecting the intensive coal mining activities: Evidence from stable mercury isotopes and Bayesian mixing model analysis. Ecotox Environ Safe 234:113392.
      Chi QH (2004) Abundance of mercury in crust, rocks and loose sediments. Geochimica 33(6):641–648.
      de la Calle I, Paez-Cabaleiro J, Lavilla I, Bendicho C (2019) One-pot synthesis of a magnetic nanocomposite based on ultrasound-assisted co-precipitation for enrichment of Hg(II) prior to detection by a direct mercury analyzer. Talanta 199:449–456.
      Deng CZ, Jiawei Zhang JW, Hu RZ, Luo K, Zhu YN, Yin RS (2022) Mercury isotope constraints on the genesis of late Mesozoic Sb deposits in South China. Sci China Earth Sci 65(2):269–281.
      Ding K (1986) Geochemistry study on the Hg–Sb deposit in Xunyang area, Shaanxi Province. Institute of Geochemistry, Chinese Academy of Sciences: Guiyang (in Chinese).
      Du BY, Feng XB, Li P, Yin RS, Yu B, Sonke JE, Guinot B, Anderson CWN, Maurice L (2018) Use of mercury isotopes to quantify mercury exposure sources in inland populations. China Environ Sci Technol 52:5407–5416.
      Emslie SD, Brasso R, Patterson WP, Valera AC, McKenzie A, Silva AM, Gleason JD, Blum JD (2015) Chronic mercury exposure in Late Neolithic/Chalcolithic populations in Portugal from the cultural use of cinnabar. Sci Rep 5:14679.
      Enrico M, Roux GL, Marusczak N, Heimbürger LE, Claustres A, Fu X, Sun R, Sonke JE (2016) Atmospheric Mercury Transfer to Peat Bogs Dominated by Gaseous Elemental Mercury Dry Deposition. Environ Sci Technol 50(5):2405–2412.
      Esbri JM, Bernaus A, Avila M, Kocman D, GarciaNoguero EM, Guerrero B, Gaona X, Alvarez R, Perez-Gonzalez G, Valiente M, Higueras P, Horvat M, Loredo J (2010) XANES speciation of mercury in three mining districts - Almaden, Asturias (Spain), Idria (Slovenia). J Synchrotron Radiat 17(2):179–186.
      Fan DL, Zhang T, Ye J (2004) The Xikuangshan Sb deposit hosted by the Upper Devonian black shale series, Hunan. China Ore Geol Rev 24:121–133.
      Feng XB, Foucher D, Hintelmann H, Yan HY, He TR, Qiu GL (2010) Tracing mercury contamination sources in sediments using mercury isotope compositions. Environ Sci Technol 44:3363–3368.
      Foucher D, Ogrinc N, Hintelmann H (2009) Tracing mercury contamination from the Idrija mining region (Slovenia) to the Gulf of Trieste using Hg isotope ratio measurements. Environ Sci Technol 2009(43):33–39.
      Fu SL, Hu RZ, Yin RS, Yan J, Mi XF, Song ZC, Sullivan NA (2020a) Mercury and in situ sulfur isotopes as constraints on the metal and sulfur sources for the world’s largest Sb deposit at Xikuangshan, southern China. Miner Deposita 55:1353–1364.
      Fu SL, Lan Q, Yan J (2020b) Trace element chemistry of hydrothermal quartz and its genetic significance: A case study from the Xikuangshan and Woxi giant Sb deposits in southern China. Ore Geol Rev 126:103732.
      Gao S, Luo TC, Zhang BR, Zhang HF, Han YW, Zhao ZD, Hu YK (1998) Chemical composition of the continental crust as revealed by studies in East China. Geochim Cosmochim Ac 62:1959–1975.
      García-Lorenzo ML, Martínez-Sánchez MJ, Pérez-Sirvent C, López-Sánchez J, Molina-Ruiz J, Tudela ML (2015) Geogenic distribution of arsenic (As) and antimony (Sb) in soils of the Murcia region in Spain. Environ Forensics 16:88–95.
      Gehrke GE, Blum JD, Marvin-DiPasquale M (2011) Sources of mercury to San Francisco Bay surface sediment as revealed by mercury stable isotopes. Geochim Cosmochim Ac 75:691–705.
      Hao CM, Gui HR, Sheng LL, Miao J, Lian HQ (2021) Contrasting water-rock interaction behaviors of antimony and arsenic in contaminated rivers around an antimony mine, Hunan Province. China, Geochemistry, p 125748.
      Hintelmann H, Lu SY (2003) High precision isotope ratio measurements of mercury isotopes in cinnabar ores using multi-collector inductively coupled plasma mass spectrometry. Analyst 128:635–639.
      Hu BF, Xue J, Zhou Y, Shao S, Fu ZY, Li Y, Chen SC, Qi L, Shi Z (2020) Modelling bioaccumulation of heavy metals in soil-crop ecosystems and identifying its controlling factors using machine learning. Environ Pollut 262:114308.
      Jiang P, Li YB, Liu GL, Yang GD, Lagos L, Yin YG, Gu BH, Jiang GB, Cai Y (2016) Evaluating the role of re-adsorption of dissolved Hg 2+ during cinnabar dissolution using isotope tracer technique. J Hazard Mater 317:466–475.
      Kodamatani H, Shigetomi A, Akama J, Kanzaki R, Tomiyasu T (2022) Distribution, alkylation, and migration of mercury in soil discharged from the Itomuka mercury mine. Sci Total Environ 815:152492.
      Kwon SY, Blum JD, Yin R, Tsui MT, Yang YH, Choi JW (2020) Mercury stable isotopes for monitoring the effectiveness of the Minamata Convention on Mercury. Earth Sci Rev 203:103111.
      Li P, Feng XB, Qiu GL, Shang LH, Li ZG (2009) Mercury pollution in Asia: A review of the contaminated sites. J Hazard Mater 168:591–601.
      Li P, Feng X, Chan HM, Zhang X, Du B (2015) Human body burden and dietary methylmercury intake: the relationship in a rice-consuming population. Environ Sci Technol 49(16):9682–9689.
      Li P, Du BY, Maurice L, Laffont L, Lagane C, Point D, Sonke JE, Yin RS, Lin C-J, Feng XB (2017) Mercury isotope signatures of methylmercury in rice samples from the Wanshan mercury mining area, China: Environmental implications. Environ Sci Technol 51:12321–12328.
      Li JG, Xie ZY, Qiu XC, Yu Q, Bu JW, Sun ZY, Long RJ, Brandis KJ, He J, Feng Q, Ramp D (2022a) Heavy metal habitat: A novel framework for mapping heavy metal contamination over large-scale catchment with a species distribution model. Water Res 226:119310.
      Li ML, Kwon SY, Poulin BA, Tsui MTK, Motta LC, Cho M (2022b) Internal dynamics and metabolism of mercury in biota: a review of insights from mercury stable isotopes. Environ Sci Technol 56:9182–9195.
      Ma YB, Zhu LM, Lu RK, Ding LL, Zhang GW, Xiong X, Li B (2020a) Geology and in-situ sulfur and lead isotope analyses of the Jinlongshan Carlin-type gold deposit in the Southern Qinling Orogen, China: Implications for metal sources and ore genesis. Ore Geol Rev 126:103777.
      Ma YJ, Wang YT, Chen Q, Li YS, Guo DC, Nie XH, Peng XW (2020b) Assessment of heavy metal pollution and the effect on bacterial community in acidic and neutral soils. Ecol Ind 117:106626.
      Ma J, Wang HL, Li DH, Liu L, Yang HG (2021) Preparation novel mercaptotriazole-functionalized paramagnetic nickel-zinc ferrite microspheres for absorbing Hg (II) in waste water. Colloids Surf, A 616:126324.
      Manceau A, Lemouchi C, Enescu M, Gaillot AC, Lanson M, Magnin V, Glatzel P, Poulin BA, Ryan JN, Aiken GR, Gautier-Luneau I, Nagy KL (2015) Formation of Mercury Sulfide from Hg(II)-Thiolate Complexes in Natural Organic Matter. Environ Sci Technol 49(16):9787–9796.
      Mao LL, Ren WB, Liu XT, He MC, Zhang BT, Lin CY, Ouyang W (2023) Mercury contamination in the water and sediments of a typical inland river– Lake basin in China: Occurrence, sources, migration and risk assessment. J Hazard Mater 446:130724.
      Matsumoto M, Liu HZ (2020) Mercury speciation and remediation strategies at a historically elemental mercury spilled site. J Hazard Mater 384:121351.
      Niu ZC, Zhang XS, Wang ZW, Ci ZJ (2011) Field controlled experiments of mercury accumulation in crops from air and soil. Environ Pollut 159:2684–2689.
      Obrist D, Kirk JL, Zhang L, Sunderland EM, Jiskra M, Selin NE (2018) A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio 47(2):116–140.
      O’Connor D, Hou DY, Ok YS, Mulder J, Duan L, Wu QR, Wang SX, Tack FMG, Rinklebe J (2019) Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. Environ Int 126:747–761.
      Outridge PM, Mason RP, Wang F, Guerrero S, Heimbürger-Boavida LE (2018) Updated global and oceanic mercury budgets for the United Nations Global Mercury Assessment 2018. Environ Sci Technol 52:11466–11477.
      Pan HJ, Zhou GH, Yang R, Cheng ZZ, Sun BB (2022) Heavy metals and as in ground water, surface water, and sediments of Dexing Giant Cu-Polymetallic Ore Cluster. East China Water 14:352.
      Pribil MJ, Rimondi V, Costagliola P, Lattanzi P, Rutherford DL (2020) Assessing mercury distribution using isotopic fractionation of mercury processes and sources adjacent and downstream of a legacy mine district in Tuscany. Italy Appl Geochem 117:104600.
      Qin ZM, Zhao ST, Shi TR, Zhang FY, Pei ZR, Wang YH, Liang YR (2022) Accumulation, regional distribution, and environmental effects of Sb in the largest Hg-Sb mine area in Qinling Orogen. China Sci Total Environ 804(150218):2021.
      Qiu GL, Feng XB, Meng B, Sommar J, Gu CH (2012) Environmental geochemistry of an active Hg mine in Xunyang, Shaanxi Province. China Appl Geochem 27(12):2280–2288.
      Quan Z, Huang W, Liao Y, Liu W, Xu H, Yan N, Qu Z (2019) Study on the regenerable sulfur-resistant sorbent for mercury removal from nonferrous metal smelting flue gas. Fuel 241:451–458.
      Ran HZ, Deng XG, Guo ZH, Hu ZH, An YA, Xiao XY, Yi LW, Xu R (2022) Pollution characteristics and environmental availability of toxic elements in soil from an abandoned arsenic-containing mine. Chemosphere 303:135189.
      Saim K (2021) Mercury (Hg) use and pollution assessment of ASGM in Ghana: challenges and strategies towards Hg reduction. Environ Sci Pollut Res 28:61919–61928.
      Salazar-Camacho C, Salas-Moreno M, Marrugo-Madrid S, Paternina-Uribe R, Marrugo-Negrete J, Díez S (2022) A human health risk assessment of methylmercury, arsenic and metals in a tropical river basin impacted by gold mining in the Colombian Pacific region. Environ Res 212:113120.
      Samaniego J, Gibaga CR, Tanciongco A, Rasty Rastrullo R (2020) Total Mercury in Soils and Sediments in the Vicinity of Abandoned Mercury Mine Area in Puerto Princesa City Philippines. Appl Sci 10:4599.
      Siegel FR (2002) Environmental Geochemistry of Potentially Toxic Metals. Springer, Berlin, Germany, pp 18–23.
      Smith CN, Kesler SE, Klaue B, Blum JD (2005) Mercury isotope fractionation in fossil hydrothermal systems. Geology 33:825–828.
      Smith CN, Kesler SE, Blum JD, Rytuba JJ (2008) Isotope geochemistry of mercury in source rocks, mineral deposits and spring deposits of the California Coast Ranges, USA. Earth Planet Sc Lett 269:399–407.
      Song ZC, Wang C, Ding L, Chen M, Hu YX, Li P, Zhang LM, Feng XB (2021) Soil mercury pollution caused by typical anthropogenic sources in China: Evidence from stable mercury isotope measurement and receptor model analysis. J Clean Prod 288:125687.
      Stetson SJ, Gray JE, Wanty RB, Macalady DL (2009) Isotopic Variability of Mercury in Ore, Mine-Waste Calcine, and Leachates of Mine-Waste Calcine from Areas Mined for Mercury. Environ Sci Technol 43:7331–7336.
      Stinton D, Schneider L, Beavis S, Stevenson J, Maher WA, Furman O, Haberle S, Zawadzki A (2020) The spatial legacy of Australian mercury contamination in the sediment of the Molonglo River. Elementa-Sci Anthrop 8:44.
      Streets DG, Zhang Q, Wu Y (2009) Projections of Global Mercury Emissions in 2050. Environ Sci Technol 43:2983–2988.
      Streets DG, Horowitz HM, Lu ZF, Levin L, Thackray CP, Sunderland EM (2019) Global and regional trends in mercury emissions and concentrations, 2010–2015. Atmos Environ 201:417–427.
      Sun GY, Feng XB, Yin RS, Zhao HF, Zhang LM, Sommara J, Li ZG, Zhang H (2019) Corn (Zea mays L.): A low methylmercury staple cereal source and an important biospheric sink of atmospheric mercury, and health risk Assessment. Environ. Int. 131:104971.
      Tao H, Liao XY, Li Y, Xu CD, Zhu GH, Cassidy DP (2020) Quantifying influences of interacting anthropogenic-natural factors on trace element accumulation and pollution risk in karst soil. Sci Total Environ 721:137770.
      Tavares DS, Lopes CB, Daniel-da-Silva AL, Vale C, Trindade T, Pereira ME (2016) Mercury in river, estuarine and seawaters–Is it possible to decrease realist environmental concentrations in order to achieve environmental quality standards? Water Res 106:439–449.
      Torres FG, De-la-Torre GE (2022) Mercury pollution in Peru: geographic distribution, health hazards, and sustainable removal technologies. Environ Sci Pollut Res 29:54045–54059.
      Tsz-Ki TM, Blum JD, Kwon SY (2020) Review of stable mercury isotopes in ecology and biogeochemistry. Sci Total Environ 716:135386.
      Wang SF, Xing DH, Wei ZQ, Jia YF (2013) Spatial and seasonal variations in soil and river water mercury in a boreal forest, Changbai Mountain, Northeastern China. Geoderma 206:123–132.
      Wang N, Han JC, Wei Y, Li G, Sun YY (2019) Potential ecological risk and health risk assessment of heavy metals and metalloid in soil around Xunyang mining areas. Sustainability 11(18):4828.
      Wang XQ, Liu XM, Wu H, Tian M, Li RH, Zhang CS (2021) Interpretations of Hg anomalous sources in drainage sediments and soils in China. J Geochem Explor 224:106711.
      Wang JX, Man Y, Yin RS, Xinbin Feng XB (2022) Isotopic and Spectroscopic Investigation of Mercury Accumulation in Houttuynia cordata Colonizing Historically Contaminated Soil. Environ Sci Technol 56(12):7997–8007.
      Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Ac 59:1217–1232.
      Wen JC, Wu YG, Li XL, Lu Q, Luo YF, Duan ZB, Li CM (2021) Migration characteristics of heavy metals in the weathering process of exposed argillaceous sandstone in a mercury-thallium mining area. Ecotox Environ Safe 208:111751.
      Wiederhold JG, Cramer CJ, Daniel K, Infante I, Bourdon B, Kretzschmar R (2010) Equilibrium mercury isotope fractionation between dissolved Hg(II) species and Thiol-bound Hg. Environ Sci Technol 44:4191–4197.
      Wiederhold JG, Smith RS, Siebner H, Jew AD, Brown GE, Bourdon B, Kretzschmar R (2013) Mercury isotope signatures as tracers for Hg cycling at the New Idria Hg Mine. Environ Sci Technol 47:6137–6145.
      Wiederhold JG, Skyllberg U, Drott A, Jiskra M, Jonsson S, Björn E, Bourdon B, Kretzschmar R (2015) Mercury isotope signatures in contaminated sediments as a tracer for local industrial pollution sources. Environ Sci Technol 49:177–185.
      Wijesiri B, Liu A, He BB, Yang B, Zhao X, Ayoko G, Goonetilleke A (2019) Behaviour of metals in an urban river and the pollution of estuarine environment. Water Res 164:114911.
      Wu Q, Wang S, Li G, Liang S, Lin CJ, Wang Y, Cai S, Liu K, Hao J (2016) Temporal Trend and Spatial Distribution of Speciated Atmospheric Mercury Emissions in China During 1978–2014. Environ Sci Technol 50(24):13428–13435.
      Xu JY, Bravo AG, Lagerkvist A, Bertilsson S, Sjöblom R, Jurate Kumpiene J (2015) Sources and remediation techniques for mercury contaminated soil. Environ Int 74:42–53.
      Yin RS, Feng XB, Wang JX, Li P, Liu JL, Zhang Y, Chen JB, Zheng LR, Hu TD (2013) Mercury speciation and mercury isotope fractionation during ore roasting process and their implication to source identification of downstream sediment in the Wanshan mercury mining area, SW China. Chem Geol 336:72–79.
      Yin RS, Deng CZ, Lehmann B, Sun GY, Lepak RF, Hurley JP, Zhao CH, Xu GW, Tan QP, Xie GZ, Hu RZ (2019) Magmatic-hydrothermal origin of mercury in Carlin-style and epithermal gold deposits in China: evidence from mercury stable isotopes. ACS Earth Space Chem 3:1631–1369.
      Zhang ZW, Zhu BQ, Cai KQ (2000) Lead isotopic steep-dipping zone and mineralization: An example from the mineral deposits concentrated area in east Qinling, China. J China Univ Geosci 11(1):66–73.
      Zhang L, Jin YQ, Lu J, Zhang CX (2009) Concentration, distribution and bioaccumulation of mercury in the Xunyang mercury mining area, Shaanxi Province. China Appl Geochem 24(5):950–956.
      Zhang Y, Chen YJ, Qi JP, Leng CB, Zhao CH (2010) Geochemistry of Gongguan-Qingtonggou Hg-Sb deposit in Xunyang, Shaanxi Province. Acta Mineralogica Sinica 30:98–106 (in Chinese).
      Zhang Y, Tang HS, Chen YJ, Leng CB, Zhao CH (2014) Ore geology, fluid inclusion and isotope geochemistry of the Xunyang Hg–Sb orefield, Qinling Orogen, Central China. Geol J 49:463–481.
      Zhang L, McKinley J, Cooper M, Peng M, Wang QL, Song YT, Cheng HX (2020) A regional soil and river sediment geochemical study in Baoshan area, Yunnan province, southwest China. J Geochem Explor 217:106557.
      Zhu DW, Wei Y, Zhao YH, Wang QL, Han JC (2018) Heavy metal pollution and ecological risk assessment of the agriculture soil in Xunyang mining area, Shaanxi Province, Northwestern China. B Environ Contam Tox 101:178–184.
    • Grant Information:
      42207438 Natural Science Foundation of China; 1521022201004 Startup Foundation for Introducing Talent of NUIST
    • Contributed Indexing:
      Keywords: Geochemistry; Mercury stable isotopes; Mining; Source apportionment; Spatial variation
    • الرقم المعرف:
      14808-60-7 (Quartz)
      FXS1BY2PGL (Mercury)
      0 (Soil)
      0 (Soil Pollutants)
    • الموضوع:
      Date Created: 20230615 Date Completed: 20230719 Latest Revision: 20230719
    • الموضوع:
      20240628
    • الرقم المعرف:
      10.1007/s11356-023-28080-0
    • الرقم المعرف:
      37322398