Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Encapsulation of activated carbon into calcium alginate microspheres toward granular-activated carbon adsorbents for elemental mercury capture from natural gas.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Masod MB;Masod MB; El-Fiqi A; El-Fiqi A; Ebiad MA; Ebiad MA
  • المصدر:
    Environmental science and pollution research international [Environ Sci Pollut Res Int] 2023 Jul; Vol. 30 (34), pp. 82199-82216. Date of Electronic Publication: 2023 Jun 15.
  • نوع النشر :
    Journal Article
  • اللغة:
    English
  • معلومة اضافية
    • المصدر:
      Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
    • بيانات النشر:
      Publication: <2013->: Berlin : Springer
      Original Publication: Landsberg, Germany : Ecomed
    • الموضوع:
    • نبذة مختصرة :
      Activated carbon (AC) is an effective adsorbent for removing environmental pollutants. However, the traditional powder form of AC shows difficulty in handling during application which widely limits its utilization on the industrial scale. Herein, to avoid such limitation, traditional AC powder was encapsulated into calcium alginate (CA) microspheres. Calcium alginate/activated carbon (CAA) composite microspheres were prepared via cross-linking of sodium alginate/activated carbon composite solutions in a calcium chloride solution. Furthermore, in order to boost adsorption affinity of CAA composite microspheres toward elemental mercury (Hg°), ammonium iodide (NH 4 I)-treated calcium alginate/activated carbon (NCA) composite microspheres were obtained by a simple impregnation method using NH 4 I treatment. The morphological, structural, and textural properties of the microspheres were characterized and their Hg° adsorptive capacity was tested at different temperatures. Interestingly, the maximum adsorption capacity of NCA adsorbent composite microspheres was determined as 36,056.5 μg/g at a flow rate of 250 mL/min, temperature of 25 °C, and 500 μg/Nm 3 of Hg° initial concentration. The Gibbs free energy (ΔG°) for NCA adsorbent composite microspheres varied from - 8.59 to - 10.54 kJ/mol indicating a spontaneous adsorption process with an exothermic nature. The experimental Hg° breakthrough curve correlated well with Yoon‒Nelson and Thomas models. The breakthrough time (t b ) and equilibrium time (t e ) were found to be 7.5 days and 23 days, respectively. Collectively, the findings of this work indicate a good feasibility of using NCA composite microspheres as potential adsorbents for removing Hg° from natural gas.
      (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Achazhiyath Edathil A, Banat F, Kumar Reddy KS, Srinivasakannan C, Shoaibi A (2018) Alginate-pyrolyzed porous carbon as efficient gas phase elemental mercury scavenger. J Nat Gas Sci Eng 55:165–173. https://doi.org/10.1016/j.jngse.2018.04.034. (PMID: 10.1016/j.jngse.2018.04.034)
      Aguilar C, Garc R, Soto-garrido G, Arriagada R (2003) Catalytic wet air oxidation of aqueous ammonia with activated carbon. Appl Catal B Environ 46:229–237. https://doi.org/10.1016/S0926-3373(03)00229-7. (PMID: 10.1016/S0926-3373(03)00229-7)
      Antuña-Nieto C, Rodríguez E, López-Antón MA, García R, Martínez-Tarazona MR (2020) Mercury adsorption in the gas phase by regenerable Au-loaded activated carbon foams: a kinetic and reaction mechanism study. New J Chem 44:12009–12018. https://doi.org/10.1039/d0nj00898b. (PMID: 10.1039/d0nj00898b)
      Aouaini F, Dhaouadi F, Sellaoui L, Badawi M, Bonilla-Petriciolet A, Lamine AB (2022) Using an enhanced multilayer model to analyze the performance of nickel alginate/graphene oxide aerogel, nickel alginate aerogel/activated carbon, and activated carbon in the adsorption of a textile dye pollutant. Environ Sci Pollut Res 29(42):63622–63628. (PMID: 10.1007/s11356-022-20343-6)
      Budihardjo MA, Wibowo YG, Ramadan BS, Serunting MA, Yohana E, Syafrudin (2021) Mercury removal using modified activated carbon of peat soil and coal in simulated landfill leachate. Environ Technol Innov 24:102022. https://doi.org/10.1016/j.eti.2021.102022. (PMID: 10.1016/j.eti.2021.102022)
      Cataldo S, Gianguzza A, Milea D, Muratore N, Pettignano A (2016) Pb(II) adsorption by a novel activated carbon–alginate composite material. A kinetic and equilibrium study. Int J Biol Macromol 92:769–778. https://doi.org/10.1016/j.ijbiomac.2016.07.099. (PMID: 10.1016/j.ijbiomac.2016.07.099)
      Chalkidis A, Jampaiah D, Hartley PG, Sabri YM, Bhargava SK (2019) Regenerable α-MnO2 nanotubes for elemental mercury removal from natural gas. Fuel Process Technol 193:317–327. https://doi.org/10.1016/j.fuproc.2019.05.034. (PMID: 10.1016/j.fuproc.2019.05.034)
      de Araújo TP, Quesada HB, dos Santos DF, da Silva Fonseca BC, Barbieri JZ, Bergamasco R, de Barros MASD (2022) Acetaminophen removal by calcium alginate/activated hydrochar composite beads: batch and fixed-bed studies. Int J Biol Macromol 203:553–562. https://doi.org/10.1016/j.ijbiomac.2022.01.177. (PMID: 10.1016/j.ijbiomac.2022.01.177)
      Dey D, Mondal A, Nag S, Mondal U, Hirani H, Banerjee P (2021) The designed synthesis of a hydrophobic covalent polymer composite to expel toxic dyes and oil from wastewater: theoretical corroboration. New J Chem 45:5165–5175. https://doi.org/10.1039/d0nj04949b. (PMID: 10.1039/d0nj04949b)
      Diamantopoulou I, Skodras G, Sakellaropoulos GP (2010) Sorption of mercury by activated carbon in the presence of flue gas components. Fuel Process Technol 91:158–163. https://doi.org/10.1016/j.fuproc.2009.09.005. (PMID: 10.1016/j.fuproc.2009.09.005)
      Durrani WZ, Nasrullah A, Khan AS, Fagieh TM, Bakhsh EM, Akhtar K, ... Bokhari A (2022) Adsorption efficiency of date palm based activated carbon-alginate membrane for methylene blue. Chemosphere 302:134793.
      Ebiad MA, Abd El-Hafiz DR, Masod MB (2020) β-FeOOH/C nanocomposite for elemental mercury removal as a new approach to environmental and natural gas processes. J Nat Gas Sci Eng 80. https://doi.org/10.1016/j.jngse.2020.103383.
      El-Feky AA, El-Azab W, Ebiad MA, Masod MB, Faramawy S (2018) Monitoring of elemental mercury in ambient air around an Egyptian natural gas processing plant. J Nat Gas Sci Eng 54:189–201. https://doi.org/10.1016/j.jngse.2018.01.019. (PMID: 10.1016/j.jngse.2018.01.019)
      Ezzeldin MF, Gajdosechova Z, Masod MB, Zaki T, Jörg Feldmann EMK (2016b) Mercury speciation and distribution in an Egyptian natural gas processing plant (in press). Energy Fuels. https://doi.org/10.1021/acs.energyfuels.6b02035. (PMID: 10.1021/acs.energyfuels.6b02035)
      Ezzeldin MF, Gajdosechova Z, Masod MB, Zaki T, Feldmann J, Krupp EM (2016a) Mercury speciation and distribution in an Egyptian natural gas processing plant. Energy Fuels 30. https://doi.org/10.1021/acs.energyfuels.6b02035.
      Fathy M, El-Sayed M, Ramzi M, Abdelraheem OH (2018) Adsorption separation of condensate oil from produced water using ACTF prepared of oil palm leaves by batch and fixed bed techniques. Egypt J Pet 27:319–326. https://doi.org/10.1016/j.ejpe.2017.05.005. (PMID: 10.1016/j.ejpe.2017.05.005)
      Fuente-Cuesta A, Diaz-Somoano M, Lopez-Anton MA, Cieplik M, Fierro JLG, Martínez-Tarazona MR (2012) Biomass gasification chars for mercury capture from a simulated flue gas of coal combustion. J Environ Manag 98:23–28. https://doi.org/10.1016/j.jenvman.2011.12.013. (PMID: 10.1016/j.jenvman.2011.12.013)
      Fuente-Cuesta A, Diamantopoulou I, Lopez-Anton MA, Diaz-Somoano M, Martínez-Tarazona MR, Sakellaropoulos GP (2015) Study of mercury adsorption by low-cost sorbents using kinetic modeling. Ind Eng Chem Res 54:5572–5579. https://doi.org/10.1021/acs.iecr.5b00262. (PMID: 10.1021/acs.iecr.5b00262)
      Ganesan S, Bhat MP, Kigga M, Uthappa UT, Jung HY, Kumeria T, Kurkuri MD (2019) Amine activated diatom xerogel hybrid material for efficient removal of hazardous dye. Mater Chem Phys 235:121738. https://doi.org/10.1016/j.matchemphys.2019.121738. (PMID: 10.1016/j.matchemphys.2019.121738)
      Haggag EA, Masod MB, Abdelsamad AA, Abdel Aal MM, Ebiad MA (2021) Kinetic studies on the adsorption of uranium on a mesoporous impregnated activated carbon. Egypt J Chem 64:1371–1385. https://doi.org/10.21608/EJCHEM.2020.50611.3039. (PMID: 10.21608/EJCHEM.2020.50611.3039)
      Hassan AF, Hrdina R (2018) Chitosan/nanohydroxyapatite composite based scallop shells as an efficient adsorbent for mercuric ions: static and dynamic adsorption studies. Int J Biol Macromol 109:507–516. https://doi.org/10.1016/j.ijbiomac.2017.12.094. (PMID: 10.1016/j.ijbiomac.2017.12.094)
      Hua X, Zhou J, Li Q, Luo Z, Cen K (2010) Gas-phase elemental mercury removal by CeO 2 impregnated activated Coke 88:5426–5431. https://doi.org/10.1021/ef100554t.
      Johari K, Alias AS, Saman N, Song ST, Mat H (2015) Removal performance of elemental mercury by low-cost adsorbents prepared through facile methods of carbonisation and activation of coconut husk. Waste Manag Res 33:81–88. https://doi.org/10.1177/0734242X14562660. (PMID: 10.1177/0734242X14562660)
      Khan MR, Rahman W, Islam S, Ferdous K, Ong HR, Chan KM, Reddy DM (2015) Performance of a submerged adsorption column compared with conventional fixed-bed adsorption 3994. https://doi.org/10.1080/19443994.2015.1030779.
      Kula I, Ug M, Ali C, Karaog H (2008) Adsorption of Cd ( II ) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl 2 activation 99:492–501. https://doi.org/10.1016/j.biortech.2007.01.015.
      Kula I, Karao MH, Arslan Y (2009) Removal of Ni ( II ) ions from aqueous solutions using activated-carbon prepared from olive stone by ZnCl 2 activation 28:547–557. https://doi.org/10.1002/ep.10358.
      Kumar Reddy KS, Al Shoaibi A, Srinivasakannan C (2015) Sulfur-leaching facts from sulfur-impregnated porous carbons in the mercury removal process. Energy Fuels 29:4488–4491. https://doi.org/10.1021/acs.energyfuels.5b00995. (PMID: 10.1021/acs.energyfuels.5b00995)
      Kumar Reddy KS, Prabhu A, Al Shoaibi A, Srinivasakannan C (2016) Application of sulfonated carbons for mercury removal in gas processing. Energy Fuels 30:3227–3232. https://doi.org/10.1021/acs.energyfuels.5b02630. (PMID: 10.1021/acs.energyfuels.5b02630)
      László K, Bóta A, Nagyu LG (1997) Characterization of activated carbons from waste materials by adsorption from aqueous solutions. Carbon N. Y. 35:593–598. https://doi.org/10.1016/S0008-6223(97)00005-5. (PMID: 10.1016/S0008-6223(97)00005-5)
      Li G, Wang S, Wu Q, Wang F, Shen B (2016) Mercury sorption study of halides modified bio-chars derived from cotton straw. Chem Eng J 302:305–313. https://doi.org/10.1016/j.cej.2016.05.045. (PMID: 10.1016/j.cej.2016.05.045)
      Li G, Wang S, Wu Q, Wang F, Ding D, Shen B (2017) Mechanism identification of temperature influence on mercury adsorption capacity of different halides modified bio-chars. Chem Eng J 315:251–261. https://doi.org/10.1016/j.cej.2017.01.030. (PMID: 10.1016/j.cej.2017.01.030)
      Lissaneddine A, Pons MN, Aziz F, Ouazzani N, Mandi L, Mousset E (2022) Electrosorption of phenolic compounds from olive mill wastewater: mass transport consideration under a transient regime through an alginate-activated carbon fixed-bed electrode. J Hazard Mater 430:128480. (PMID: 10.1016/j.jhazmat.2022.128480)
      Liu Z, Yang W, Xu W, Liu Y (2018) Removal of elemental mercury by bio-chars derived from seaweed impregnated with potassium iodine. Chem Eng J 339:468–478. https://doi.org/10.1016/j.cej.2018.01.148. (PMID: 10.1016/j.cej.2018.01.148)
      Liu Z, Adewuyi YG, Shi S et al (2019) Removal of gaseous Hg0 using novel seaweed biomass-based activated carbon. Chem Eng J 366:41–49. https://doi.org/10.1016/j.cej.2019.02.025. (PMID: 10.1016/j.cej.2019.02.025)
      Lua AC, Yang T (2005) Characteristics of activated carbon prepared from pistachio-nut shell by zinc chloride activation under nitrogen and vacuum conditions. J Colloid Interface Sci 290(2):505–513. (PMID: 10.1016/j.jcis.2005.04.063)
      Matos J, Nahas C, Rojas L, Rosales M (2011) Synthesis and characterization of activated carbon from sawdust of Algarroba wood. 1. Physical activation and pyrolysis. J Hazard Mater 196:360–369. https://doi.org/10.1016/j.jhazmat.2011.09.046. (PMID: 10.1016/j.jhazmat.2011.09.046)
      Maurya KL, Swain G, Sonwani RK, Verma A, Singh RS (2022) Biodegradation of Congo red dye using polyurethane foam-based biocarrier combined with activated carbon and sodium alginate: batch and continuous study. Biores Technol 351:126999. (PMID: 10.1016/j.biortech.2022.126999)
      Mei Z, Shen Z, Yuan T, Wang W, Han H (2007) Removal of vapor-phase elemental mercury by N-doped CuCoO 4 loaded on activated carbon 88:623–629. https://doi.org/10.1016/j.fuproc.2007.02.002.
      Mei Z, Shen Z, Zhao Q, Wang W, Zhang Y (2008) Removal and recovery of gas-phase element mercury by metal oxide-loaded activated carbon 152:721–729. https://doi.org/10.1016/j.jhazmat.2007.07.038.
      Mondal U, Nag S, Batabyal AK, Hirani H, Banerjee P (2021) Two notable porous polynuclear materials ER1.30@CMERI-2020 and ER1.65@CMERI-2020 for remedial solution of fluoride, PWEs and anionic dyes from contaminated water bodies: Fabrication of household water purification unit. J Environ Chem Eng 9:105518. https://doi.org/10.1016/j.jece.2021.105518. (PMID: 10.1016/j.jece.2021.105518)
      Mondal U, Bej S, Hazra A, Mandal S, Pal TK, Banerjee P (2022) Amine-substituent induced highly selective and rapid “turn-on” detection of carcinogenic 1,4-dioxane from purely aqueous and vapour phase with novel post-synthetically modified d10-MOFs. Dalt Trans 51:2083–2093. https://doi.org/10.1039/d1dt03976h. (PMID: 10.1039/d1dt03976h)
      Nag S, Mondal U, Hirani H, Chakraborty D, Bhaumik A, Banerjee P (2022) Strategic optimization of phase-selective thermochemically amended terra-firma originating from excavation-squander for geogenic fluoride adsorption: a combined experimental and in silico approach. Environ Sci Pollut Res 29:77821–77838. https://doi.org/10.1007/s11356-022-21178-x. (PMID: 10.1007/s11356-022-21178-x)
      Nasrullah A, Bhat AH, Naeem A, Isa MH, Danish M (2018) High surface area mesoporous activated carbon-alginate beads for efficient removal of methylene blue. Int J Biol Macromol 107:1792–1799. https://doi.org/10.1016/j.ijbiomac.2017.10.045. (PMID: 10.1016/j.ijbiomac.2017.10.045)
      Neri G, Bonavita A, Rizzo G, Micali G, Donate N, Ipsale S (2006) Investigation of permeation tubes for temperature-compensated gas-sensor calibrators. IEEE Sens J 6:1120–1124. https://doi.org/10.1109/JSEN.2006.881347. (PMID: 10.1109/JSEN.2006.881347)
      Olmos Buitrago J, Perez RA, El-Fiqi A, Singh RK, Kim JH, Kim HW (2015) Core-shell fibrous stem cell carriers incorporating osteogenic nanoparticulate cues for bone tissue engineering. Acta Biomater 28:183–192. https://doi.org/10.1016/j.actbio.2015.09.021. (PMID: 10.1016/j.actbio.2015.09.021)
      Oualid HA, Essamlali Y, Amadine O, Daanoun K, Zahouily M (2017) Green synthesis of Ag/ZnO nanohybrid using sodium alginate gelation method. Ceram Int 43:13786–13790. https://doi.org/10.1016/j.ceramint.2017.07.097. (PMID: 10.1016/j.ceramint.2017.07.097)
      Papageorgiou SK, Kouvelos EP, Favvas EP, Sapalidis AA, Romanos GE, Katsaros FK (2010) Metal-carboxylate interactions in metal-alginate complexes studied with FTIR spectroscopy. Carbohydr Res 345:469–473. https://doi.org/10.1016/j.carres.2009.12.010. (PMID: 10.1016/j.carres.2009.12.010)
      Puziy AM, Poddubnaya OI, Martinez-Alonso A, Suarez-Garcia F, Tascón JMD (2002) Characterization of synthetic carbons activated with phosphoric acid. Appl Surf Sci 200:196–202. (PMID: 10.1016/S0169-4332(02)00883-8)
      Qiusheng Z, Xiaoyan L, Jin Q, Jing W, Xuegang L (2015) Porous zirconium alginate beads adsorbent for fluoride adsorption from aqueous solutions. RSC Adv 5(3):2100–2112. (PMID: 10.1039/C4RA12036A)
      Rajamani M, Rajendrakumar K (2019) Chitosan-boehmite desiccant composite as a promising adsorbent towards heavy metal removal. J Environ Manag 244:257–264. https://doi.org/10.1016/j.jenvman.2019.05.056. (PMID: 10.1016/j.jenvman.2019.05.056)
      Reddy KSK, Shoaibi AA, Srinivasakannan C (2014) Gas-phase mercury removal through sulfur impregnated porous carbon. J Ind Eng Chem 20:2969–2974. https://doi.org/10.1016/j.jiec.2013.10.067. (PMID: 10.1016/j.jiec.2013.10.067)
      Senior CL, Helble JJ, Sarofim AF (2000) Emissions of mercury, trace elements, and fine particles from stationary combustion sources.
      Shafawi A, Ebdon L, Foulkes M, Stockwell P, Corns W (1999) Determination of total mercury in hydrocarbons and natural gas condensate by atomic fluorescence spectrometry. Analyst 124:185–189. https://doi.org/10.1039/a809679a. (PMID: 10.1039/a809679a)
      Shamsudin MS, Azha SF, Sellaoui L, Badawi M, Bonilla-Petriciolet A, Ismail S (2022) Performance and interactions of diclofenac adsorption using alginate/carbon-based films: experimental investigation and statistical physics modelling. Chem Eng J 428:131929. (PMID: 10.1016/j.cej.2021.131929)
      Siddiqui N, Don J, Mondal K, Mahajan A (2011) Development of bamboo-derived sorbents for mercury removal in gas phase. Environ Technol 32:383–394. https://doi.org/10.1080/09593330.2010.501087. (PMID: 10.1080/09593330.2010.501087)
      Skodras G, Diamantopoulou I, Sakellaropoulos GP (2007) Role of activated carbon structural properties and surface chemistry in mercury adsorption. Desalination 210:281–286. https://doi.org/10.1016/j.desal.2005.12.082. (PMID: 10.1016/j.desal.2005.12.082)
      Suresh Kumar Reddy K, Al Shoaibi A, Srinivasakannan C (2014) Gas-phase mercury removal through sulfur impregnated porous carbon. J Ind Eng Chem 20:2969–2974. https://doi.org/10.1016/j.jiec.2013.10.067. (PMID: 10.1016/j.jiec.2013.10.067)
      Tan Z, Qiu J, Zeng H, Liu H, Xiang J (2011) Removal of elemental mercury by bamboo charcoal impregnated with H 2O2. Fuel 90:1471–1475. https://doi.org/10.1016/j.fuel.2010.12.004. (PMID: 10.1016/j.fuel.2010.12.004)
      Tehrani-Bagha AR, Nikkar H, Mahmoodi NM, Markazi M, Menger FM (2011) The sorption of cationic dyes onto kaolin: kinetic, isotherm and thermodynamic studies. Desalination 266:274–280. https://doi.org/10.1016/j.desal.2010.08.036. (PMID: 10.1016/j.desal.2010.08.036)
      Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87. https://doi.org/10.1515/pac-2014-1117.
      Tian L, Li C, Li Q, Zeng G, Gao Z, Li S, Fan X (2009) Removal of elemental mercury by activated carbon impregnated with CeO 2. Fuel 88:1687–1691. https://doi.org/10.1016/j.fuel.2009.01.022. (PMID: 10.1016/j.fuel.2009.01.022)
      Ullah K, Khan S, Khan M, Rahman ZU, Al-Ghamdi YO, Mahmood A, ... Khan SA (2022) A bioresource catalyst system of alginate-starch-activated carbon microsphere templated Cu nanoparticles: potentials in nitroarenes hydrogenation and dyes discoloration. Int J Biol Macromol 222:887–901.
      Wilhelm SM, Bloom N (2000) Mercury in petroleum. Fuel Process Technol 63:1–27. https://doi.org/10.1016/S0378-3820(99)00068-5. (PMID: 10.1016/S0378-3820(99)00068-5)
      Xu Y, Zeng X, Zhang B et al (2016) Experiment and kinetic study of elemental mercury adsorption over a novel chlorinated sorbent derived from coal and waste polyvinyl chloride. Energy Fuel 30:10635–10642. https://doi.org/10.1021/acs.energyfuels.6b01372. (PMID: 10.1021/acs.energyfuels.6b01372)
      Xu W, Pan J, Fan B, Liu Y (2019) Removal of gaseous elemental mercury using seaweed chars impregnated by NH4Cl and NH4Br. J Clean Prod 216:277–287. https://doi.org/10.1016/j.jclepro.2019.01.195. (PMID: 10.1016/j.jclepro.2019.01.195)
      Yan R, Ng YL, Liang DT, Lim CS, Tay JH (2003) Bench-scale experimental study on the effect of flue gas composition on mercury removal by activated carbon adsorption 1528–1535.
      Yang T, Lua AC (2003) Characteristics of activated carbons prepared from pistachio-nut shells by physical activation. J Colloid Interface Sci 267:408–417. https://doi.org/10.1016/S0021-9797(03)00689-1. (PMID: 10.1016/S0021-9797(03)00689-1)
      Yang W, Liu Z, Xu W, Liu Y (2018) Removal of elemental mercury from flue gas using sargassum chars modified by NH4Br reagent. Fuel 214:196–206. https://doi.org/10.1016/j.fuel.2017.11.004. (PMID: 10.1016/j.fuel.2017.11.004)
      Yang W, Shan Y, Ding S et al (2019) Gas-phase elemental mercury removal using ammonium chloride impregnated sargassum chars. Environ Technol 40:1923–1936. https://doi.org/10.1080/09593330.2018.1432699. (PMID: 10.1080/09593330.2018.1432699)
      Yaqub A, Syed SM, Ajab H, Haq MZU (2023) Activated carbon derived from Dodonaea Viscosa into beads of calcium-alginate for the sorption of methylene blue (MB): Kinetics, equilibrium and thermodynamics. J Environ Manag 327:116925. (PMID: 10.1016/j.jenvman.2022.116925)
      Yin K, Zhang H, Yan Y (2019) High efficiency of toluene adsorption over a novel ZIF-67 membrane coating on paper-like stainless steel fibers. J Solid State Chem 279:120976. https://doi.org/10.1016/j.jssc.2019.120976. (PMID: 10.1016/j.jssc.2019.120976)
      Yorgun S, Yıldız D (2015) Preparation and characterization of activated carbons from Paulownia wood by chemical activation with H3PO4. J Taiwan Inst Chem Eng 53:122–131. https://doi.org/10.1016/j.jtice.2015.02.032. (PMID: 10.1016/j.jtice.2015.02.032)
      Zawadzki J (1989) Infrared-spectroscopy in surface-chemistry of carbons. Chem Phys Carbon 21:147–380.
      Zhang J, Duan Y, Zhou Q, Zhu C, She M, Ding W (2016) Adsorptive removal of gas-phase mercury by oxygen non-thermal plasma modified activated carbon. Chem Eng J 294:281–289. https://doi.org/10.1016/j.cej.2016.02.002. (PMID: 10.1016/j.cej.2016.02.002)
      Zhang A, Xiang J, Sun L, Hu S, Li P, Shi J, Fu P (2009) Preparation, characterization, and application of modified chitosan sorbents for elemental mercury removal. Ind Eng Chem Res 4980–4989.
      Zhong L, Li W, Zhang Y, Norris P, Cao Y, Pan WP (2017) Kinetic studies of mercury adsorption in activated carbon modified by iodine steam vapor deposition method. Fuel 188:343–351. https://doi.org/10.1016/j.fuel.2016.10.048. (PMID: 10.1016/j.fuel.2016.10.048)
      Zhou Q, Duan YF, Hong YG, Zhu C, She M, Zhang J, Wei HQ (2015) Experimental and kinetic studies of gas-phase mercury adsorption by raw and bromine modified activated carbon. Fuel Process Technol 134:325–332. https://doi.org/10.1016/j.fuproc.2014.12.052. (PMID: 10.1016/j.fuproc.2014.12.052)
      Zhu J, Yang J, Deng B (2009) Enhanced mercury ion adsorption by amine-modified activated carbon 166:866–872. https://doi.org/10.1016/j.jhazmat.2008.11.095.
    • Contributed Indexing:
      Keywords: Activated carbon; Ammonium iodide treatment; Calcium alginate; Elemental mercury capture; Microspheres; Natural gas
    • الرقم المعرف:
      16291-96-6 (Charcoal)
      0 (Natural Gas)
      FXS1BY2PGL (Mercury)
      0 (Alginates)
      0 (Powders)
    • الموضوع:
      Date Created: 20230615 Date Completed: 20230719 Latest Revision: 20230719
    • الموضوع:
      20230719
    • الرقم المعرف:
      10.1007/s11356-023-28176-7
    • الرقم المعرف:
      37318735