Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Concentrations and health risk appraisal of heavy metals and volatile organic compounds in soils of automobile mechanic villages in Ogun State, Nigeria.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- المؤلفون: Ganiyu SA;Ganiyu SA; Olobadola MO; Olobadola MO; Adeyemi AA; Adeyemi AA
- المصدر:
Environmental geochemistry and health [Environ Geochem Health] 2023 Aug; Vol. 45 (8), pp. 6407-6433. Date of Electronic Publication: 2023 Jun 14.- نوع النشر :
Journal Article- اللغة:
English - المصدر:
- معلومة اضافية
- المصدر: Publisher: Kluwer Academic Publishers Country of Publication: Netherlands NLM ID: 8903118 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-2983 (Electronic) Linking ISSN: 02694042 NLM ISO Abbreviation: Environ Geochem Health Subsets: MEDLINE
- بيانات النشر: Publication: 1999- : Dordrecht : Kluwer Academic Publishers
Original Publication: Kew, Surrey : Science and Technology Letters, 1985- - الموضوع:
- نبذة مختصرة : This report presents the findings of the concentrations, distributions and health risks assessment of heavy metals (HMs) and volatile organic compounds (VOCs) in topsoils of two typical automobile mechanic villages (MVs) situated within Ogun State, Nigeria. One of the MVs is located in basement complex terrain (Abeokuta), while the second is in the sedimentary formation (Sagamu). Ten composite samples were collected at depth of 0-30 cm with the aid of soil auger from spent oil-contaminated spots within the two MVs. The chemical parameters of interest were Pb, Cd, benzene, ethylbenzene, toluene, total petroleum hydrocarbon (TPH) as well as oil and grease (O&G). In addition, soil pH, cation exchange capacity (CEC), electrical conductivity (EC) and particle size distribution were also evaluated in order to find out their impacts on assessed soil pollutants. Results revealed that the soils in both MVs are of sandy loam texture, slight acidic to neutral pH, mean CEC < 15 cmol/kg and mean EC > 100 μS/cm. The mean concentration of each of analyzed HMs and VOCs in soils from the two MVs was < 5 mg/kg, while the mean values of TPH and O&G content were > 50 mg/kg. The mean Cd values in soils of both MVs were higher than the national soil screening level of 0.8 mg/kg, but lower than the Canadian and Italian guidelines. There is no significant correlation between each of HMs/VOCs and any of assessed soil physicochemical variables. The non-cancer risk expressed in terms of hazard index (HI) was > 1 via oral ingestion route for adults and children at the two MVs, indicating adverse non-carcinogenic health risk. The HI > 1 value was obtained for adults only through the dermal absorption pathway in Abeokuta MV. However, HI values for the two age groups at the two MVs via inhalation route were < 1, indicating no likelihood of any non-carcinogenic effects via the breathing exposure. The potential of non-cancer risk via oral ingestion route in both MVs was derived from the contributive ratios of HMs and VOCs in the order: Cd > benzene > Pb > toluene. The carcinogenic risk (CR) values due to ingested Cd, benzene and Pb for both age groups at the two MVs exceed the safe limit range of 10 -6 to 10 -4 . Cadmium, benzene and lead made considerable contributions to the estimation of CR through dermal exposure for adults only in Abeokuta MV. The CR values via inhalation pathway for adults and children in both MVs were within the threshold range. Artisans and children should circumvent accidental ingestion of contaminated soils in addition to wearing of protective clothes during routine vehicle maintenance activities.
(© 2023. The Author(s), under exclusive licence to Springer Nature B.V.) - References: Abdel Aal, G. Z., & Atekwana, E. A. (2014). Spectral induced polarization (SIP) response of biodegraded oil in porous media. Geophysical Journal International, 196(2), 804–817. (PMID: 10.1093/gji/ggt416)
Abidemi, O. O. (2011). Levels of Pb, Fe, Cd and Co in soils of automobile workshops in Osun State, Nigeria. Journal of Applied Science and Environmental Management, 15(2), 279–282.
Abis, L., Loubet, B., Ciuraru, R., Lafouge, F., Dequiedt, S., Houot, S., Maron, P. A., & Bourgeteau-Sadet, s. (2018). Profiles of volatile organic compound emissions from soils amended with organic waste products. Science of the Total Environment, 636, 1333–1343. (PMID: 10.1016/j.scitotenv.2018.04.232)
Adebiyi, F. M., Ore, O. T., Adegunwa, A. O., & Akhigbe, G. E. (2021). Source apportionment, health and ecological risk assessments of essential and toxic elements in kerosene-contaminated soils. Environmental Forensics. https://doi.org/10.1080/15275922.2021.1940384. (PMID: 10.1080/15275922.2021.1940384)
Adebiyi, F. M., Ore, O. T., Akhigbe, G. E., & Adegunwa, A. O. (2020). Metal fractionation in the soils around a refined petroleum product depot. Environmental Forensics. https://doi.org/10.1080/15275922.2020.1728432. (PMID: 10.1080/15275922.2020.1728432)
Adelekan, B. A., & Abegunde, K. D. (2011). Heavy metal contamination of soil and groundwater at automobile mechanic villages in Ibadan. Nigeria. Int J Phys Sci., 6(5), 1045–1058.
Adeniji, A. O., Okoh, O. O., & Okoh, A. I. (2017). Analytical methods for the determination of the distribution of total petroleum hydrocarbons in the water and sediment of aquatic systems: A review. Journal of Chemistry. https://doi.org/10.1155/2017/5178937. (PMID: 10.1155/2017/5178937)
Adeniyi, A. A., & Afolabi, J. A. (2002). Determination of total petroleum hydrocarbons and heavy metals in soils within the vicinity of facilities handling refined petroleum products in Lagos metropolis. Environment International, 28(1–2), 79–82. (PMID: 10.1016/S0160-4120(02)00007-7)
Adewuyi, G. O., Etchie, A. T., & Etchie, O. T. (2012). Evaluation of total petroleum hydrocarbons (TPHHs) and some related heavy metals in soil and groundwater of Ubeji Settlement, Warri Metropolis. Terrestrial & Aquatic Environmental Technology, 6(1), 61–65.
Afsharnia, M., Zarei, A., Farhang, M., & Allahdadi, M. (2018). Non-carcinogenic risk assessment to human health due to intake of fluoride in the groundwater in rural areas of Gonabad and Bajestan, Iran: A case study All-Qase, Mehdi. Human and Ecological Risk Assessesment. https://doi.org/10.1080/10807039.2018.1461553. (PMID: 10.1080/10807039.2018.1461553)
Akomah, O. N., & Osayande, A. D. (2018). Evaluation of hydrocarbon levels and Identification of indigenous bacteria in soil from auto mechanic workshops along Ikokwu Mechanic Village, Port-Harcourt Nigeria. Journal of AppIied Science and Environment Management, 22(1), 115–118.
Alekseev, I., & Abakumov, E. (2020). The content and distribution of trace elements and polycyclic aromatic hydrocarbons in soils of Maritime Antarctica. Environmental Monitoring and Assessment, 192, 670. https://doi.org/10.1007/s10661-020-08618-2. (PMID: 10.1007/s10661-020-08618-2)
Amaechi, M., & Onwuka, S. U. (2021). Determination of the presence and levels of heavy metals in soils of automobile workshops in Awka Anambra State. International Journal of Environment and Pollution Research, 9(3), 18–32.
Anegbe, B., Okuo, J. M., Atenaga, M., Ighodaro, A., Emina, A., & Oladejo, N. A. (2018). Distribution and speciation of heavy metals in soils around some selected auto repair workshops in Oghara, Delta State, Nigeria. International Journal of Environment, Agriculture and Biotechnology, 3(2), 574–584. (PMID: 10.22161/ijeab/3.2.35)
APHA (1998). Standard methods for examination of water and wastewater. 19th Edition. American Public Health Association American Water Works Association and Water Pollution Control Federation, Washington D.C, U.S.A.
Appiah-Adjei, E. K., Baidu, E. E., Adjei, K. A., & Nkansah, M. A. (2019). Potential heavy metal pollution of soils from artisanal automobile workshops: The case of Suame Magazine, Ghana. Environmental Earth Sciences, 78, 62. https://doi.org/10.1007/s12665-019-8069-7. (PMID: 10.1007/s12665-019-8069-7)
Aralu, C. C., Okoye, P. A. C., Abugu, H. O., & Eze, V. C. (2022). Toxicity and distribution of polycyclic aromatic hydrocarbons in leachates from an unlined dumpsite in Nnewi, Nigeria. International Journal of Environmental Analytical Chemistry. https://doi.org/10.1080/03067319.2022.2140415. (PMID: 10.1080/03067319.2022.2140415)
Are, K. S., Adelana, A. O., Fademi, I. O., & Aina, O. A. (2018). Improving physical properties of degraded soil: Potential of poultry manure and biochar. Agriculture and Natural Resources, 51(6), 454–462. https://doi.org/10.1016/j.anres.2018.03.009. (PMID: 10.1016/j.anres.2018.03.009)
Ayoola, K. O. (2022). Analysis of rainfall variability for crop planning in Abeokuta, Nigeria. Journal of Meteorology and Climate Science, 21(1), 114–122.
Bakirdere, S., & Yaman, M. (2008). Determination of lead, cadmium and copper in roadside soil and plants in Elazig, Turkey. Environmental Monitoring and Assessment, 136(1–3), 401–410. https://doi.org/10.1007/s10661-007-9695-1. (PMID: 10.1007/s10661-007-9695-1)
Banjoko, A., & Sobulo, R. A. (1994). Particle size distribution of Fe, Mn, Cu, Zn, Cu and B in some Nigerian soils. Nigerian Journal of Sciences, 34, 60–163.
Barkett, M. O., & Akȕn, E. (2018). Heavy metal contents of contaminated soils and ecological risk assessment in abandoned copper mine harbor in Yedidalga Northern Cyprus. Environmental Earth Sciences, 77, 3787. https://doi.org/10.1007/s12665-018-7556-6. (PMID: 10.1007/s12665-018-7556-6)
Basim, Y., Mohebali, G., Jorfi, S., Nabizadeh, R., Ahmadi Moghadam, M., Ghadiri, A., & Jaafarzadeh Haghighifard, N. (2020). Biodegradation of total petroleum hydrocarbons in contaminated soils using indigenous bacterial consortium. Environmental Health Engineering & Management Journal, 7(2), 127–133. https://doi.org/10.34172/EHEM.2020.15. (PMID: 10.34172/EHEM.2020.15)
Benhaddya, M. L., & Hadjel, M. (2014). Spatial distribution and contamination assessment of heavy metals in surface soils of Hassi Messaoud, Alggeria. Environment and Earth Science, 71, 1473–1486. https://doi.org/10.1007/s12665-013-2552-3. (PMID: 10.1007/s12665-013-2552-3)
Bouyoucous, J. (1962). Improved hydrometer method for making particle size analysis of soils. Agronomy Journal, 54, 464–456. (PMID: 10.2134/agronj1962.00021962005400050028x)
Caporale, A. G., & Violante, A. (2016). Chemical processes affecting the mobility of heavy metals and metalloids in soil environments. Current Pollution Reports, 2, 15–27. https://doi.org/10.1007/s40726-015-0024-y. (PMID: 10.1007/s40726-015-0024-y)
CCME (Canadian Council of Ministers of the Environment) (2007). Canadian soil quality gguidelines for the protection of environmental and human health. Canadian Council of Ministers of the environment, Winnipeg.
CEPA (Chinese Environmental Protection Admistration) (1995). Environmental quality standard for soils (GB15618–1995) CEPA Beijing (in Chinese).
Chang, E.-E., Wei-Chi, W., Li-Xuan, Z., & Hung-Lung, C. (2010). Helath risk assessment of exposure to selected volatile organic compounds emitted from an integrated iron and steel plants. Inhalation Toxicology, 22, 117–125. (PMID: 10.3109/08958378.2010.507636)
Chonokhuu, S., Batbold, C., Chuluunpurev, B., Battsengel, E., Dorjsuren, B., & Byambaa, B. (2019). Contamination and health risk assessment of heavy metals in the soil of major cities in Mongolia. International Journal of Environmental Research and Public Health, 16, 2552. https://doi.org/10.3390/ijerph16142552. (PMID: 10.3390/ijerph16142552)
da Silva, D. B., Martins, E. M., & Corrêa, S. M. (2016). Role of carbonyls and aromatics in the formation of tropospheric ozone in Riode Janeiro Brazil. Environmental Monitoring Assessment, 188(5), 289. https://doi.org/10.1007/s10661-016-5278-3. (PMID: 10.1007/s10661-016-5278-3)
Dehghani, M., Fazizadeh, M., Sorooshian, A., et al. (2018). Characteristics and health effects of BTEX in a hotspot for urban pollution. Ecotoxicology and Environmental Safety, 155, 133–143. (PMID: 10.1016/j.ecoenv.2018.02.065)
Department of Petroleum Resources (DPR) (2002). Environmental guidelines and standards for the petroleum industry in Nigeria (EGASPIN) Revised edition. Department of Petroleum Resources, Ministry of Petroleum and Minerals Resources Abuja, Nigeria.
Department of Environmental Affairs (DoEA) (2010). The framework for the management of contaminated land, South Africa. Available online. http://sawic.environment.gov.za/documents/562.pdf .
Devatha, C. P., Vishal, V. A., & Rao, P. C. J. (2019). Investigation of physical and chemical characteristics on soil due to crude oil contamination and its remediation. Applied Water Sciences. https://doi.org/10.1007/s13201-019-0970-4. (PMID: 10.1007/s13201-019-0970-4)
Djab, M., & Makhoukhi, B. (2018). Adsorption of cadmium onto modified bentonites from aqueous solution. Journal of Materials and Environmental Sciences, 9(8), 2238–2246.
Duodo, G. O., Goonetileke, A., & Ayoko, G. A. (2016). Comparison of pollution indices for the asseesment of heavy metal in Brisbane River sediment. Environmental Pollution, 219, 1077–1091. (PMID: 10.1016/j.envpol.2016.09.008)
Edokpolo, B., Yu, Q. J., & Connell, D. (2015). Health risk characterization for exposure to benzene in service stations and petroleum refineries environments using human adverse response data. Toxicology Reports, 2, 917–927. https://doi.org/10.1061/j.toxrep.2015.06.004. (PMID: 10.1061/j.toxrep.2015.06.004)
Egbueri, J. C., & Mgbenu, C. N. (2020). Chemometric analysis for pollution source identification and human health risk assessment of water resources in Ojoto Province. Southeast Nigeria. Applied Water Sci, 10, 98. https://doi.org/10.1007/s13201-020-01180-9. (PMID: 10.1007/s13201-020-01180-9)
Elmorsi, R. (2021). Distribution of oil, grease and polycyclic aromatic hydrocarbons in coastal water and sediments of Suez Bay. International Journal of Oceanography & Hydrobiology, 50(4), 373–384. https://doi.org/10.2478/oandhs-2021-0032. (PMID: 10.2478/oandhs-2021-0032)
Eze, V. C., Enyoh, C. E., & Ndife, C. T. (2021c). Soil cationic relationships, structural and fertility assessment within selected active dumpsites in Nigeria. Chemistry Africa, 4, 127–136. https://doi.org/10.1007/s42250-020-00194-9. (PMID: 10.1007/s42250-020-00194-9)
Eze, V. C., Ndife, C. T., & Muogbo, M. O. (2021a). Carcinogenic and non-carcinogenic health risk assessment of heavy metals in Njaba River, Imo State Nigeria. Brazilian Journal of Analytical Chemistry, 8(33), 57–70. https://doi.org/10.30744/brjac.2179-3425.AR-05-2021. (PMID: 10.30744/brjac.2179-3425.AR-05-2021)
Eze, V. C., Nwabudike, A. R., Duru, C. E., Isiuku, B. O., Ibe, F. C., Ogbuagu, J. O., Enyoh, C. E., & Muogbo, M. O. (2021b). Human health risk assessment of the levels of dioxin-like polychlorinated biphenyl (PCBs) in soils from mechanic workshops within Nekede mechanic village Imo State Nigeria. International Journal of Environmental Analytical Chemistry. https://doi.org/10.1080/03067319.2021.1974424. (PMID: 10.1080/03067319.2021.1974424)
Eze, V. C., Onwukeme, V., & Enyoh, C. E. (2020). Pollution, status, ecological and human health risks of heavy metals in soil from selected active dumpsites in southeastern Nigeria using energy dispersive X-ray spectrometer. International Journal of Environmental Analytical Chemistry. https://doi.org/10.1080/03067319.2020.1772778. (PMID: 10.1080/03067319.2020.1772778)
Fandi, N. F. M., Jalaludin, J., Latif, M. T., Abd Hamid, H. H., & Awang, M. F. (2020). BTEX exposure assessment and inhalation health risks to traffic policemen in the Klang Valley Region, Malaysia. Aerosol & Air Quality Research, 20, 1922–1937. https://doi.org/10.4209/aaqr.2019.11.0574. (PMID: 10.4209/aaqr.2019.11.0574)
Ganiyu, S. A., Atoyebi, M. K., Are, K. S., Olurin, O. T., & Badmus, B. S. (2019). Soil physico-chemical and hydraulic properties of petroleum-derived and vegetable oil–contaminated Haplic Lixisol and Rhodic Nitisol in southwest Nigeria. Environmental Monitoring Assessment, 191, 559. https://doi.org/10.1007/s10661-019-7656-0. (PMID: 10.1007/s10661-019-7656-0)
Ganiyu, S. A., Mabunmi, A. A., Olurin, O. T., Adeyemi, A. A., Jegede, O. A., & Okeh, A. (2021a). Assessment of microbial and heavy metal contamination in shallow hand-dug wells bordering Ona River, southwest Nigeria. Environmental Monitoring and Assessment, 193, 126. https://doi.org/10.1007/s10661-021-08910-9. (PMID: 10.1007/s10661-021-08910-9)
Ganiyu, S. A., Olurin, O. T., Morakinyo, D. O., Olobadola, M. O., & Rabiu, J. A. (2022). Physico-chemical and thermal characteristics of sandy loam soils contaminated by single and mixed pollutants (mineral and vegetable oils). Environmental Monitoring and Assessment, 194, 454. https://doi.org/10.1007/s10661-022-10126-4. (PMID: 10.1007/s10661-022-10126-4)
Ganiyu, S. A., Oyadeyi, A. T., & Adeyemi, A. A. (2021b). Assessment of heavy metals contamination and associated risks in shallow groundwater sources from three different residential areas within Ibadan metropolis, southwest Nigeria. Applied Water Science, 11, 81. https://doi.org/10.1007/s13201-021-01414-4. (PMID: 10.1007/s13201-021-01414-4)
Garg, A., Gupta, N. C., & Tyagi, S. K. (2018). Levels of benzene, toluene, ethyl benzene, and xylene near a traffic–congested area of east Delhi. Environmental Claims Journal, 31, 5–15. https://doi.org/10.1080/10406026.2018.1525025. (PMID: 10.1080/10406026.2018.1525025)
Garg, A., Gupta, N., & Tyagi, S. (2019). Study of seasonal and spatial variability among Benzene, Toluene and P-xylene (BTp-x) in ambient air of Delhi India. Pollution, 5(1), 135–146.
Gbadebo, A. M., Oyedepo, J. A., & Taiwo, A. M. (2010). Variability of nitrate in groundwater in some parts of southwestern Nigeria. The Pacific Journal of Science and Technology, 11(2), 572–584.
Gee, G.W., Or, D. (2002). Particle Size Analysis. In: Dane, J.H., Topp, G.C. (eds) Methods of Soil Analysis. Part 4, Physical methods, SSSA Inc. Madison, pp 225–294.
Giao, N. T., Anh, P. K., & Hong Nhien, H. T. (2021). Health risk assessment for the exposure of workers to BTEX at the gasoline stations. Journal of Applied Science and Environmental Mangement, 25(1), 71–77.
Giri, S., & Singh, A. K. (2019). Assessment of metal pollution in groundwater using a novel multivariate metal pollution index in the mining areas of the Singhbhum copper belt. Environmental Earth Sciences, 78(6), 192. (PMID: 10.1007/s12665-019-8200-9)
Habeebullah, T. M. (2015). Risk Assessment of explosure to BTEX in the Holy city of Makkah. Arabian Jounal of Geosciences. https://doi.org/10.1007/s12517-013-1231-8. (PMID: 10.1007/s12517-013-1231-8)
Hakanson, L. (1980). An ecological risk index for aquatic pollution control in a sedimentalogical approach. Water Research, 14, 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8. (PMID: 10.1016/0043-1354(80)90143-8)
Harati, B., Shahtaheri, S., Karimi, A., Azam, K., Ahmadi, A., Afzali-Rad, M., & Harati, A. (2016). Cancer risk analysis of benzene and ethylbenzene in painters. Basic & Clinical Cancer Research, 8(4), 22–28.
Hazrati, S., Rostami, R., Fazlzadeh, M., & Pourfarzi, F. (2016). Benzene, toluene, ethylbenzene and xylene concentrations in atmospheric ambient air of gasoline and CNG refueling stations. Air Quality, Atmosphere & Health. https://doi.org/10.1007/s11869-015-0349-0. (PMID: 10.1007/s11869-015-0349-0)
Hedayatzade, F., & Hassanzadeh, N. (2020). Occurrence, probable source, and health risk assessment of benzene, toluene, ethylbenzene, and xylene compounds in ambient urban atmosphere in Ahvaz, Iran. Archives of Hygiene Sciences, 9(2), 152–167. (PMID: 10.29252/ArchHygSci.9.2.152)
Huang, X., Hu, J., Qin, F., Quan, W., Cao, R., Fan, M., & Wu, X. (2017). Heavy metal pollution and ecological assessment around the Jinsha coal-fired power plant (China). International Journal of Environmental Research and Public Health, 14, 1589. https://doi.org/10.3390/ijerph14121589. (PMID: 10.3390/ijerph14121589)
IARC (1999). Monographs on the evaluation of carcinogenic risks to humans. 11 edn. IARC, Lyon, pp 401–432.
Ibe, F. C., Duru, C. E., Isiuku, B. O., & Akalazu, J. N. (2021). Ecological risk assessment of the levels of polycyclic aromatic hydrocarbons in soils of the abandoned sections of Orji Mechanic Village, Owerri, Imo state, Nigeria. Bulletin of the National Research Center, 45, 18. https://doi.org/10.1186/s42269-021-00485-2. (PMID: 10.1186/s42269-021-00485-2)
Ibe, F. C., Opara, A. I., Ibe, B. O., & Amaobi, C. E. (2019). Application of assessment models for pollution and health risk from effluent discharge into a tropical stream: case study of Inyishi River Southeastern Nigeria. Environmental Monitoring and Assessment, 191(753), 1–15.
Ibeto, C., Anekwe, C., & Ihedioha, J. (2019). Human exposure risk to semivolatile organic compounds via soil in automobile workshop in Awka, Southeastern, Nigeria. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-019-04981-x. (PMID: 10.1007/s11356-019-04981-x)
Ibrahim, E. A., & Selim, E. M. (2022). Pollution and health risk assessment of trace metals in vegetable field soils in the Eastern Nile Delta Egypt. Environmental Monitoring Assessment, 194(8), 540. https://doi.org/10.1007/s10661-022-10199-1. (PMID: 10.1007/s10661-022-10199-1)
Igwe, O., Ngwoke, M., Ukah, B. U., & Ubido, D. E. (2021). Assessment of the physicochemical qualities of groundwater and soils around oil-producing communities in Afam, area of Porthacourt Niger Delta Nigeria. Applied Water Science, 11, 74. https://doi.org/10.1007/s13201-021-01393-6. (PMID: 10.1007/s13201-021-01393-6)
Inam, E., Edet, J. B., & Offiong, N. O. (2015). Levels and occupational health risk assessment of trace metals in soils from automobile repair workshop village and environs in Uyo metropolis, Nigeria. African Journal of Environmental Science & Technology, 9(7), 584–591. https://doi.org/10.5897/AJEST2015.1909. (PMID: 10.5897/AJEST2015.1909)
Ipeaiyeda, A. R., & Dawodu, M. (2008). Heavy metals contamination of topsoil and dispersion in the vicinities of reclaimed auto-repair workshops in Iwo Nigeria. Bulletin of Chemical Society of Ethiopia, 22(3), 339–348.
Ipeaiyeda, A. R., & Ogungbemi, A. O. (2020). Recontamination of automobile workshop soils containing Heavy metals and PAHs using chelating agents. International Journal of Environmental Pollution and Remediation, 8, 37–45. https://doi.org/10.1159/ijepr.2020.005. (PMID: 10.1159/ijepr.2020.005)
Isimekhai, K. A., Garelick, H., Watt, J., & Purchase, D. (2019). Heavy metal distribution and risk assessment in soil from an informal e-waste recycling site in Lagos State Nigeria. Environmental Science and Pollution Research, 24(20), 17206–17219. https://doi.org/10.1007/s11356-017-8877-9. (PMID: 10.1007/s11356-017-8877-9)
Islam, M. S., Ahmed, M. K., Habibullah-Al Mamun, M., & Masunaga, S. (2015). Potential ecological risk of hazardous elements in different land-use urban soils of Bangladesh. Science of the Total Environment, 512–513, 94–102. (PMID: 10.1016/j.scitotenv.2014.12.100)
Itta, A., El-Ramada, H., Ashall, T., El-Henawy, A., Shams, M., Talha, N., Elbehiry, F., & Brevik, E. (2019). Seasonal and spatial distribution of soil trace elements around Kitchener drain in the Northern Nile Delta Egypt. Agriculture, 9, 152. https://doi.org/10.3390/agriculture9070152. (PMID: 10.3390/agriculture9070152)
Iwegbue, M. A., & Martincigh, B. S. (2018). Ecological and human health risks arising from exposure to metals in urban soils under different land uses in Nigeria. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-017-1113-9. (PMID: 10.1007/s11356-017-1113-9)
Jackson, M.L.C. (1958). Soil chemical analysis practice. Haline Eagle Wood Cliff limited. Eaglewood Cliffs, p 230.
Jafari, A., Ghaderpoori, M., Kamarehie, B., & Abdipour, H. (2019). Soil pollution evaluation and health risk assessment of heavy metals around Douroud cement factory Iran. Environmental Earth Sciences, 78, 250. https://doi.org/10.1007/s12665-019-8220-5. (PMID: 10.1007/s12665-019-8220-5)
Jafari, A., Kamarehie, B., Ghaderpoori, M., Khoshnamvand, N., & Birjandi, M. (2017). The concentration data of heavy metals in Iranian grown and imported rice and human health hazard assessment. Data in Brief, 16, 453–459. (PMID: 10.1016/j.dib.2017.11.057)
James, R. R., Wilbon, P., & DiVincenzo, J. P. (2010). Pervious and impervious urban stormwater runoff in a rapidly urbanizing region: Occurrence of fluoranthene and Pyrene. Bulletin of Environment Contamination and Toxicology, 85, 32–36. https://doi.org/10.1007/s00128-010-0016-y. (PMID: 10.1007/s00128-010-0016-y)
Jim, C. Y. (1998). Soil Chemical Analysis Practice (p. 230). Haline Eagle Wood Cliff Limited.
Jimoh, W. L. O., & Mohammed, M. I. (2014). Effect of electrical conductivity on the soil of irrigated farmlands of Kaduna Metropolis Nigeria. Int. Journal of Engineering Research and Applications, 4, 314–318.
Jolaoso, A. O., Njoku, K. L., Adedokun, A. H., & Adesuyi, A. A. (2019). Assessment automobile mechanic workshop soils in Lagos and the Genotoxic potential of the simulated lechate using Allium Cepa L. Environmental Quality, 34, 48–62.
Joseph, A. A., Titilope, J. J., Oguntimehin, I. I., & Lajide, L. (2017). Delineation of heavy metals in soils from auto-mechanic workshops within Okitipupa, Ondo State, Nigeria. International Research Journal of Public and Environmental Health., 4(7), 136–147.
Kamunda, C., Mathuthu, M., & Madhuku, M. (2016). Health risk assessment of heavy metals in soils from Witwatersrand Gold Mining Basin South Africa. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph.13070663. (PMID: 10.3390/ijerph.13070663)
Kareem, R. O., Adesina, R. B., & Adetu, S. O. (2015). Hydrochemical assessment of groundwater quality in Sagamu area, southwestern Nigeria. Global Journal of Geological Sciences, 14, 41–47. (PMID: 10.4314/gjgs.v14i1.4)
Khan, M. I., Irfan, M., Aziz, M., & Khan, A. H. (2017). Geotechnical characteristics of effluent contaminated cohesive soils. Journal of Environmental Engineering and Landscape Management, 25(01), 75–82. https://doi.org/10.3846/1648.2016121055. (PMID: 10.3846/1648.2016121055)
Khan, M. Z., Islam, M. A., Sadiqul Amin, M., & Bhuiyan, M. M. R. (2019). Spatial variability and geostatistical analysis of selected soil. Bangladesh Journal of Science and Industrial Research, 54(1), 55–66. (PMID: 10.3329/bjsir.v54i1.40731)
Kumar, S. A., Kokila, A., & Banu, J. R. (2014). Biodegradation of automobile service station wastewater. Desalination and Water Treatment, 52(25–27), 4649–4655. https://doi.org/10.1080/19443994.2013.808416. (PMID: 10.1080/19443994.2013.808416)
Kuranchie, F. A., Angnunavuri, P. N., Attiogbe, F., & Nerquaye- Tetteh, N. E. (2019). Occupational exposure of benzene, toluene, ethyl benzene and xylene (BTEX) to pump atttendants in Ghana: Implications for policy guidance. Cogent Environmental Science, 5(1), 1803418. https://doi.org/10.1080/2331843.2019.1603418. (PMID: 10.1080/2331843.2019.1603418)
Lawal, O. L., Arokoyu, S. B., & Udeh, I. I. (2015). Assessment of automobile workshop in a typical urban environment in Sub-saharan Africa. Environmental Research Engineering and Management, 71(1), 27–35. (PMID: 10.5755/j01.erem.71.1.9303)
Li, Y., & Yan, B. (2022). Human health risk assessment and distribution of volatile organic compounds in a chemical site, Weinan, China. Open Chemistry, 20, 192–203. (PMID: 10.1515/chem-2022-0132)
Liu, C., Lu, L., Huang, T., Huang, Y., & DingZhao, I. W. (2016). The distribution and health risk assessment of metals in soils in the vicinity of industrial sites in Dongguan China. International Journal of Environmental Research and Public Health, 13, 832. https://doi.org/10.3390/ijerph13080832. (PMID: 10.3390/ijerph13080832)
Ma, L., Yhang, Z., Li, L., & Wang, L. (2016). Source Identification and risk assessment of heavy metal contamination in urban soils of Changsha, a mine impacted city in southern China. Environmental Science and Pollution Research, 23, 17058–17066. https://doi.org/10.1007/s11356-0616-6890-z. (PMID: 10.1007/s11356-0616-6890-z)
Maaji, A. M., Yunus, M. M., & Shuaibu, A. B. (2022). Environmental risk assessment of some selected heavy metals in soil among small scale automobile repair workshops in Brownfields urban of Damaturu LGA Yobe State Nigeria. International Journal of Research and Innovation in Applied Science (IJRIAS), 7(8), 87–95.
Maikan, A., & Kozielska, B. (2016). Assessment of the BTEX concentrations and health risk in urban nursery schools in Gliwice, Poland. AIMS Environs Sci, 3, 858–870. https://doi.org/10.3934/environsci.2016.4.858. (PMID: 10.3934/environsci.2016.4.858)
Majolagbe, A. O., Alkali, I. I., & Onwordi, C. T. (2014). Ecological risk assessment of soil metallic pollution in mechanic villages, Abeokuta, Nigeria. Journal of Environment, 3(3), 1–9.
Mao, D., Lu, L., Revil, A., Zuo, Y., Hinton, J., & Ren, Z. J. (2016). Geophysical monitoring of hydrocarbon-contaminated soils remediated with a bioelectrochemical system. Environmental Science & Technology. https://doi.org/10.1021/acs.est.6600535. (PMID: 10.1021/acs.est.6600535)
Martins, I. F., & Peixoto, R. S. (2012). Biodegradation of petroleum hydrocarbons in hypersaline environments. Brazilian Journal of Microbiology, 43, 865–872. (PMID: 10.1590/S1517-83822012000300003)
MATTM, Italian Republic (2006). Decree of the Ministry of the Environment “Decreto Legislativo 152/2006, norme in material ambientale” Gazetta Ufficiale della Repubblica Italiana, 88, Supplemento 96/L (in Italian).
Mazurek, R., Kowalska, J., Gasiorek, M., Zadrożny, P., Józefowska, A., Zaleski, T., Kępka, W., Tymczuk, M., & Orlowska, K. (2017). Assessment of heavy metals contamination in surface layers of Roztocze National Park Forest Soils (SE Poland) by indices of pollution. Chemosphere, 168, 839–850. https://doi.org/10.1016/j.chemosphere.2016.10.126. (PMID: 10.1016/j.chemosphere.2016.10.126)
Medeiros, W. N., Magalhães Valente, D. S., Queiroz, D. M., Carvalho Pinto, F. A., & Assis, I. R. (2018). Apparent soil electrical conductivity in two different soil types. Revista Ciência Agronômica, 49(1), 43–52. https://doi.org/10.5935/1806-6690.20180005. (PMID: 10.5935/1806-6690.20180005)
Mgbenu, C. N., & Egbueri, J. C. (2019). The hydrogeochemical signature quality indices and health risk assessment of water resources in Umunya district, southeast Nigeria. Applied Water Science, 9, 22. https://doi.org/10.1007/s13201-019-0900-5. (PMID: 10.1007/s13201-019-0900-5)
Mo, L., Zhou, Y., Gopalakrishana, G., & Li, X. (2020). Spatical distribution and risk assessment of toxic metals in agricultural soils from endemic nasopharyngeal carcinoma region in south China. Open Geosciences, 12, 568–579. (PMID: 10.1515/geo-2020-0110)
Movafagh, A., Mansouri, N., Moattar, F., & Vafaeinejad, A. R. (2018). Distribution and ecological risk assessment of heavy metals in roadside soil. Environment Protection Engineering, 44(3), 5–17. https://doi.org/10.5277/epe180301. (PMID: 10.5277/epe180301)
Muze, N. E., Opara, A. I., Ibe, F. C., & Njoku, O. C. (2020). Assessment of the geo-environmental effects of activities of auto-mechanic workshops at Alaoji Aba and Elekahia Port Harcourt, Niger Delta Nigeria. Environmental Analysis Health and Toxicology, 35(2), 2020005. https://doi.org/10.5620/eaht.e2020005. (PMID: 10.5620/eaht.e2020005)
Nduka, J. K., Amuka, J. P. O., Onwuka, J. C., Udowelle, N. A., & Orisakwe, O. E. (2016). Human health risk assessment of lead, manganese and copper from scrapped car paint dust from automobile workshops in Nigeria. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-016-7219-7. (PMID: 10.1007/s11356-016-7219-7)
NESREA (2011). 1st Eleven Gazetted Regulations Federal Republic of Nigeria. Official Gazette.
NGSA (2016). Geological and Mineral Resources Map of Ogun State, Nigeria. Nigerian Geological Survey Agency, Abuja, Nigeria.
Nwachukwu, M. A., Feng, H., & Achilike, K. (2010a). Integrated study for automobile wastes management and environmentally friendly mechanic villages in the Imo River Basin, Nigeria. Afriacn Journal of Environmental Science and Technology, 4(4), 239–249.
Nwachukwu, M. A., Feng, H., & Alinnor, J. (2010b). Assesssment of heavy metals pollution in soil and their implications within and around mechanic villages. International Journal of Environmental Science and Technology, 7(2), 347–358. (PMID: 10.1007/BF03326144)
Nwachukwu, M. A., Feng, H., & Alinnor, J. (2011). Trace metal deposition in soil from auto-mechanic village to urban residential areas in Owerri, Nigeria. Procedia Environmental Sciences, 4, 310–322. (PMID: 10.1016/j.proenv.2011.03.036)
Nwachukwu, M. A., Feng, H., Alinnor, J., & Nwachukwu, M. (2012). A comparative analyses of trace metal pollution parity between sandy and shaly soils: Evidence from two mechanic villages in the Imo River Basin. Environment and Earth Science, 65, 765–774. https://doi.org/10.1007/s12665-011-1122-9. (PMID: 10.1007/s12665-011-1122-9)
Nweze, E. J., Ubani, C. S., Okeke, E. S., Ezeorba, T. P. C., & Arazu, A. V. (2021). Health risk assessment of heavy metals associated with Terminalia Catappa fruit consumption obtained from an automobile workshop cluster in Nzukka Nigeria. Current Applied Science & Technology, 22(2), 1–15. https://doi.org/10.55003/cast.2022.02.22.006. (PMID: 10.55003/cast.2022.02.22.006)
Ogeleka, D. F., Edjere, O., Nmai, O. O., Ezeoga, P., & Okieimen, F. E. (2018). Consideration of contamination status of soil within the vicinity of automobile workshops in Warri, Delta State Nigeria. Science Journal of Chemistry, 6(4), 56–65. https://doi.org/10.11648/j.sjs.20180604.14. (PMID: 10.11648/j.sjs.20180604.14)
Oguh, C. E., & Obiwulu, E. N. O. (2020). Human risk on heavy metal pollution and bbioaccumulattion factor in soil and some edible vegetables around active auto mechanic workshop in Chanchaga, Minna, Niger State, Nigeria. Annals of Ecology and Environmental Science, 4(1), 12–22.
Ogundele, L. T., Adejoro, I. A., & Ayeku, P. O. (2019). Health risk assessment of heavy metals in soil samples from an abandoned industrial waste dumpsite in Ibadan Nigeria. Environmental Monitoring Assessment, 191, 290. https://doi.org/10.1007/s10661-019-7454-8. (PMID: 10.1007/s10661-019-7454-8)
Ojekunle, Z. O., Adeyemi, A. A., Taiwo, A. M., Ganiyu, S. A., & Balogun, M. A. (2020). Assessment of physicochemical characteristics of groundwater within selected industrial areas in Ogun State Nigeria. Environmental Pollutants & Bioavailability, 32(1), 100–113. https://doi.org/10.1080/26395940.2020.1780157. (PMID: 10.1080/26395940.2020.1780157)
Oke, M. O. (2018). Assessment of meteorological droughts in Abeokuta, southwestern Nigeria. J Climatol Weather Forecasting, 6, 235. https://doi.org/10.4172/2342-2534.1000235. (PMID: 10.4172/2342-2534.1000235)
Okoro, D., Oviasogie, P. O., & Oviasogie, F. E. (2011). Soil quality assessment 33 months after crude oil spillage and clean up. Chemical Speciation and Bioavailability, 23(1), 1–6. https://doi.org/10.3184/095422911x12963991543492. (PMID: 10.3184/095422911x12963991543492)
Olawoyin, R., Oyewole, S. A., & Grayson, R. L. (2012). Potential risk effects from elevated levels of soil heavy metals on human health in the Niger Delta. Ecotoxicology and Environmental Safety, 85, 120–130. (PMID: 10.1016/j.ecoenv.2012.08.004)
Onwukeme, V. I., & Eze, V. C. (2021). Identification of heavy metals source within selected active dumpsites in southeastern Nigeria. EAHT, 36(2), e2021008. https://doi.org/10.5620/eaht.2021008. (PMID: 10.5620/eaht.2021008)
Orji, F. A., Ibiene, A. A., & Okerentugba, P. O. (2013). Bioremediation of petroleum hydrocarbon-polluted mangrove swamps using nutrient formula produced from water hyacint (Eicchornia crassipes). American Journal of Environmental Science, 9(4), 348–366. https://doi.org/10.3844/ajessp.2013.348.366. (PMID: 10.3844/ajessp.2013.348.366)
Oyeyemi, K. D., & Aizebeokhai, A. P. (2015). Geogenic radiological impact assessment of soil samples collected from parts of Sagamu southwestern Nigeria. Indian Journal of Natural Sciences, 6(33), 10299–10308.
Padoan, E., Rome, C., Mehta, N., Dino, G. A., Deluca, D. A., & Ajmone-Marsan, F. (2020). Bioaccessibility of metals in soils surrounding two dismissed mining sites in northern Italy. Int J Environ Sci and Tech. https://doi.org/10.1007/s13762-020-02938-z. (PMID: 10.1007/s13762-020-02938-z)
Pam, A. A., Ato, R. S., & Offem, J. O. (2013). Evaluation of heavy metals in soils around auto mechanic workshop clusters in Gboko and Markurdi Central Nigeria. Jounal of Environmental Chemistry and Ecotoxicology, 5(11), 298–306.
Poggio, L., Vrščaj, B., Hepperle, E., Schulin, R., & Marsan, F. A. (2008). Introducing a method of human health rrisk evaluation for planning and soil quality management of heavy metal-polluted soils-an example from Grugliasco (Italy). Landscape and Urban Planning, 88(2–4), 64–72. (PMID: 10.1016/j.landurbplan.2008.08.002)
Qing, X., Yutong, Z., & Shenggao, L. (2015). Assessment of heavy metals pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, North east China. Ecotoxicology and Environmental Safety, 120, 377–385. https://doi.org/10.1016/j.ecoenv.2015.06.019. (PMID: 10.1016/j.ecoenv.2015.06.019)
Raj, D., & Maiti, S. K. (2020). Risk assessment of potentially toxic elements in soils and vegetables around coal-fired thermal power plant: A case study of Dhanbad India. Environmental Monitoring Assessment, 192, 699. https://doi.org/10.1007/s10661-020-08643-1. (PMID: 10.1007/s10661-020-08643-1)
Rauckyte, T., Zak, S., Pawlak, Z., & Oloyede, A. (2010). Determination of oil and grease, total petroleum lydrocarbons and volatile aromatic compounds in soil and sediments samples. Journal of Environment Engineering and Landscape Management, 18(3), 163–169. (PMID: 10.3846/jeelm.2010.19)
Sainju, U. M., & Liptzin, D. (2022). Relating soil chemical properties to other soil properties and dryland crop production. Frontiers in Environmental Science, 10, 1005114. https://doi.org/10.3389/fenvs.2022.1005114. (PMID: 10.3389/fenvs.2022.1005114)
Sherene, T. (2010). Mobility and transport of heavy metals in polluted soil environment. Biological Forum, 2, 112–120.
Short, J. R., Fanning, D. S., Foss, J. E., & Patterson, J. C. (1986). Soils of the mall in Washington, D.C: statistical summary of properties. Soil Science Society of American Journal, 50, 699–705. (PMID: 10.2136/sssaj1986.03615995005000030030x)
Sigdel, A., Jung, W., Min, B., Lee, M., Choi, U., Timmes, T., Kim, S.-J., Kang, C.-U., Kumar, R., & Jeon, B.-H. (2017). Concurrent removal of cadmium and benzene from aqueous solution by powdered activated carbon impregnated aliginate beads. CATENA, 148(1), 101–107. https://doi.org/10.1016/j.catena.2016.06.029. (PMID: 10.1016/j.catena.2016.06.029)
Sikakwe, G. H., Tyopine, A. A., & Eyong, A. A. (2022). Assessment of polycyclic aromatic hydrocarbons and heavy metal pollutants in soil around semi urban petrol stations and automobile mechanic workshops. Makara Journal of Science, 26(1), 45–60. https://doi.org/10.7454/mss.v26i1.1250. (PMID: 10.7454/mss.v26i1.1250)
Solly, E. F., Weber, V., Zimmermann, S., Walthert, L., Hagedorn, F., & Schmidt, M. W. I. (2020). A critical evaluation of the relationship between the effective CEC and soil organic carbon content in Swiss Forest soils. Frontiers in Forests and Global Change, 3, 98. https://doi.org/10.3389/ffgc.2020.00098. (PMID: 10.3389/ffgc.2020.00098)
Stout, S. A., Litman, E., & Blue, D. (2018). Metal concentrations in used engine oils. Relevance to site assessemnts of soils. Environmental Forensics, 19(3), 191–205. https://doi.org/10.1080/15275922.2018.1474288. (PMID: 10.1080/15275922.2018.1474288)
Tiwari, V., Hanai, Y., & Masunaga, S. (2010). Ambient levels of volatile organic compounds in the vicinity of petrochemical industrial area of Yokohama Japan. Air Quality, Atomsphere & Health, 3, 65–75. (PMID: 10.1007/s11869-009-0052-0)
Travis, M. J., Weisbrod, N., & Gross, A. (2008). Accumulation of oil and grease in soils irrigated with grey water and their potential role in soil water repellency. Science of the Total Environment, 394, 68–74. https://doi.org/10.1016/j.scitotenv.2008.01.004. (PMID: 10.1016/j.scitotenv.2008.01.004)
Uchendu, U. I., & Ogwo, P. A. (2014). The effect of spent engine oil discharge on soil properties in an automobile mechanic village in Nekede, Imo state, Nigeria. IOSR Journal of Environmental Science, Toxicology and Food Technology, 8(11), 28–32. (PMID: 10.9790/2402-081112832)
Ukah, B. U., Egbueri, J. C., Unigwe, C. O., & Ubido, O. E. (2019). Extent of heavy metals pollution and health risk assessment of groundwater in a densely populated industrial areas, Lagos, Nigeria. Int J Energy and Water Res. https://doi.org/10.1007/s42108-019-00039-3. (PMID: 10.1007/s42108-019-00039-3)
USEPA (U.S. Environmental Protection Agency) (2004). Risk Assessment Guidance for superfund volume 1; Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment): USEPA, Washington DC, USA.
USEPA (United States Environmental Protection Agency) (2011). Regional screening level table (RSL) for chemical contaminants at superfund sites U.S. Environmental Protection Agency, Washington DC.
USEPA method 5021A (2014). Volatile Organic Compounds in soils and other solid matrices using equilbrum headspace analysis by Gas Chromatography (SW-846, 5th edition). Revision June, 2003. Updated July 2014.
US DOE (United States Department of Energy) (2011). The risk assessment information system (RAIS). US Department of Energy’s Oak Ridge Operations Office (ORO): Oak Ridge, TN, USA.
Usikalu, M. R., Maleka, P. P., Malik, M., Opeyemi, K. D., & Adewoyin, O. D. (2015). Assessment of geogenic natural radionuclide contents of soil samples collected from Ogun State, Southwestern Nigeria. International Journal of Radiation Research, 13(4), 355–361.
Utang, P. B., Eludoyin, O. S., & Ijekeye, C. L. (2013). Impacts of automobile workshops on heavy metals concentrations of urban soils in Obio/Akpor LGA, Rivers State Nigeria. African Journal of Agricultural Research, 8(26), 3476–3482. (PMID: 10.5897/AJAR2013.6753)
Valente, D. S. M., Queiroz, D. M., Ṕinto, F. A. C., & Santos, F. L. (2012). The relationship between apparent soil electrical conductivity and soil properties. Revista Ciȇncia Agronomica., 43(4), 683–690. (PMID: 10.1590/S1806-66902012000400009)
Wang, Z., Luo, Y., Zheng, C., An, C., & Mi, Z. (2020). Spatial distribution, source identification, and risk assessment of heavy metals in the soils from a mining region: a case study of Bayan Obo in Northwestern China. Human and Ecological Risk Assessment: an International Journal, 27(5), 1276–1295. https://doi.org/10.1080/10807039.2020.1821350. (PMID: 10.1080/10807039.2020.1821350)
Wen, X., Wang, Q., Zhang, G., Bai, J., Wang, W., & Zhang, S. (2017). Assessment of heavy metals contamination in soil profiles of roadside Suaeda Salsa wetlands in a Chinese delta. Physics and Chemistry of the Earth, 97, 71–76. (PMID: 10.1016/j.pce.2017.01.001)
Wieczorek, J., Baran, A., Pawlik, E., Madro, I., Gasienica, A., Wojtaszek, I., & Antonkiewicz, J. (2021). Assessment of the health risk associated with exposure to heavy metals present in particulate matter deposition in the Malopolska Province. Geology, Geophysics & Environment, 47(2), 95–107. (PMID: 10.7494/geol.2021.47.2.95)
Wieczorek, J., Baran, A., Urbański, K., Mazurek, R., & Klimowicz-Pawlas, A. (2018). Assessment of the pollution and ecological risk of lead and cadmium in soils. Envirinmental Geochemistry and Health, 40(6), 2325–2342. https://doi.org/10.1007/s10653-018-0100-5. (PMID: 10.1007/s10653-018-0100-5)
World Health Organization (1996). Permissible limits of heavy mtals in soils and plants. International programme on Chemical Safety. Environmental Health Criteria, 165. Geneva. World Health Organization.
Wu, S., Peng, S., Zhang, X., Wu, D., et al. (2015). Levels and health risk assessments of heavy metals in urban soils in Donguan, China. Journal of Geochemical Exploration, 148, 71–78. (PMID: 10.1016/j.gexplo.2014.08.009)
Xu, L., Lu, A., Wang, J., Ma, Z., Pan, L., Feng, X., & Luan, Y. (2015). Accumulation status, sources and phytoavailability of metals in greenhouse vegetables production systems in Beijing, China. Ecotoxicology and Environmental Safety, 122, 214–220. (PMID: 10.1016/j.ecoenv.2015.07.025)
Yan, W., Mahmood, Q., Peng, D., Fu, W., Chen, T., Wang, Y., Li, S., Chen, J., & Liu, D. (2015). The spatial distribution pattern of heavy metals and risk assessment of moso bamboo forest soil around lead-zinc mine in southeastern China. Soil & Tillage Research, 153, 120–130. (PMID: 10.1016/j.still.2015.05.013)
Zhang, J., Peng, W., Lin, M., Liu, C., Chen, S., Wang, X., & Gui, H. (2023). Environmental geochemical baseline determination and pollution assessment of heavy metals in farmland soil of typical coal-based cities: A case study of Suzhou city in Anhui Province, China. Heliyon, 9(4), 14841. https://doi.org/10.1016/j.heliyon.2023.e14841. (PMID: 10.1016/j.heliyon.2023.e14841)
Zhang, Q., Han, G., Liu, M., & Liang, T. (2019). Spatial distribution and controlling factors of heavy metals in soils from Pudding Karst Critical Zone Observatory, southwest China. Environment and Earth Science, 78, 279. https://doi.org/10.1007/s12665-019-8280-6. (PMID: 10.1007/s12665-019-8280-6) - Contributed Indexing: Keywords: Abeokuta and Sagamu; Carcinogenic and non-carcinogenic; HMs and VOCs; Mechanic villages; Oral ingestion route; Spent oil-contaminated soil
- الرقم المعرف: 0 (Volatile Organic Compounds)
00BH33GNGH (Cadmium)
0 (Soil)
J64922108F (Benzene)
2P299V784P (Lead)
0 (Metals, Heavy)
0 (Soil Pollutants)
0 (Petroleum)
3FPU23BG52 (Toluene) - الموضوع: Date Created: 20230614 Date Completed: 20230807 Latest Revision: 20230827
- الموضوع: 20230828
- الرقم المعرف: 10.1007/s10653-023-01644-2
- الرقم المعرف: 37316652
- المصدر:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login
حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.