Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Evaluation of groundwater quality with microbiological and physicochemical parameters in Bartın, Turkey.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Gunes G;Gunes G;Gunes G
  • المصدر:
    Environmental monitoring and assessment [Environ Monit Assess] 2023 Jun 09; Vol. 195 (7), pp. 828. Date of Electronic Publication: 2023 Jun 09.
  • نوع النشر :
    Journal Article
  • اللغة:
    English
  • معلومة اضافية
    • المصدر:
      Publisher: Springer Country of Publication: Netherlands NLM ID: 8508350 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2959 (Electronic) Linking ISSN: 01676369 NLM ISO Abbreviation: Environ Monit Assess Subsets: MEDLINE
    • بيانات النشر:
      Publication: 1998- : Dordrecht : Springer
      Original Publication: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-
    • الموضوع:
    • نبذة مختصرة :
      In this study, the physicochemical and microbiological quality of groundwater samples was investigated in rainy and dry periods. Forty samples were collected from 10 sampling points. TDS, EC, color, turbidity, NO 3 , SO 4 , PO 4 , Cl, total hardness, E. coli, and F. streptococci analyses were performed. Cl, TH, and NO 3 were higher in the rainy period unlike TDS, EC, SO 4 , and PO 4 . Physicochemical parameters did not exceed the acceptable values reported for drinking waters in TS/WHO. However, groundwater samples were not suitable for drinking water in terms of microbiological parameters. Both bacteria were found in higher numbers in the dry period. However, E. coli was more abundant in the dry period in contrast to F. streptococci. According to the nitrate/Cl ratio and other analyses (correlation matrix and principal component analysis) groundwater quality was affected by many sources. The results of analytic and statistical analyzes showed that F. streptococci is mostly related to animal waste unlike E. coli. According to the EC/FS ratio, microbiological pollution in rural areas was affected by animal wastes in both periods. On the other hand, animal waste in the urban areas may be effective during the rainy period. PCA and correlation matrix also confirmed these results. According to PCA results, groundwater quality may be affected by geogenic sources, fecal sources, and use of fertilizer in the study area. According to WQI, 5% and 16% of the groundwater samples were not found suitable as drinking water in dry and rainy periods, respectively.
      (© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
    • References:
      Abdel-Satar, A. M., Manal, H., Waed, A. K., Alahmad, R., Yousef, W. M., Alsomadi, H. R., & Iqbal, T. (2017). Quality assessment of groundwater and agricultural soil in Hail region, Saudi Arabia. Egyptian Journal of Aquatic Research, 43, 55–64. (PMID: 10.1016/j.ejar.2016.12.004)
      Akhtar, M. M., Tang, Z., & Mohamadi, B. (2014). Contamination potential assessment of potable groundwater in Lahore. Polish Journal of Environmental Studies, 23, 1095–1916.
      Alam, M., Shaikh, W. A., Chakraborty, S., Avishek, K., & Bhattacharya, T. (2016). Groundwater arsenic contamination and potential health risk assessment of gangetic plains of Jharkhand, India. Exposure and Health, 8, 125–142. (PMID: 10.1007/s12403-015-0188-0)
      American Public Health Association (APHA). (2012). Standard methods for the examination of water and waste water  (22nd edn.). Washington, American Public Health Association, American Water Works Association, Water Environment Federation. DC: American Public Health Association.
      BS EN ISO 9308–1:2014+A1:2017. (2017). Water quality - Enumeration of Escherichia coli and coliform bacteria - Part 1: Membrane filtration method for waters with low bacterial background flora. https://www.en-standard.eu/bs-en-iso-9308-1-2014-a1-2017 . Accessed 28 May 2023.
      Cloutier, V., Lefebvre, R., Therrien, R., & Savard, M. M. (2008). Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. Journal of Hydrology, 353, 294–313. (PMID: 10.1016/j.jhydrol.2008.02.015)
      Crane, S. R., & Moore, J. A. (1984). Bacterial pollution of groundwater: A review. Water Air and Soil Pollution, 22, 67–83. (PMID: 10.1007/BF00587465)
      Elangovan, N. S., Lavanya, V., & Arunthathi, S. (2018). Assessment of groundwater contamination in a suburban area of Chennai, Tamil Nadu, India. Environment, Development and Sustainability, 20, 2609–2621. (PMID: 10.1007/s10668-017-0007-9)
      EN ISO 7899–2:2000. (2000). Water quality - Detection and enumeration of intestinal enterococci - Part 2: Membrane filtration method. [Internet]. Available from: https://intweb.tse.org.tr/standard/standard/Standard.aspx? . Accessed 28 May 2023.
      Ferguson, D. M., Moore, D. F., Getrich, M. A., & Zhowandai, M. H. (2005). Enumeration and speciation of enterococci found in marine and intertidal sediments and coastal water in southern California. Journal of Applied Microbiology, 99, 598–608. (PMID: 10.1111/j.1365-2672.2005.02660.x)
      Ferrer, N., Folcha, A., Masoc, G., Sancheza, S., & Sanchez-Vila, X. (2020). What are the main factors influencing the presence of faecal bacteria pollution in groundwater systems in developing countries? Journal of Contaminant Hydrology, 228, 103556. (PMID: 10.1016/j.jconhyd.2019.103556)
      Geldreich, E. E., & Kenner, B. A. (1969). Concepts of faecal streptococci in stream pollution. Journal - Water Pollution Control Federation, 41, 336–351.
      Goto, D. K., & Yan, T. (2011). Effects of land uses on fecal indicator bacteria in the water and soil of a tropical watershed. Microbes and Environments, 26, 254–260. (PMID: 10.1264/jsme2.ME11115)
      Howard, G., Pedley, S., Barrett, M., Nalubega, M., & Johal, K. (2003). Risk factors contributing to microbiological contamination of shallow groundwater in Kampala, Uganda. Water Research, 37, 3421–3429. (PMID: 10.1016/S0043-1354(03)00235-5)
      Imamura, G. J., Thompson, R. S., Boehm, A. B., & Jay, J. A. (2011). Beach wrack is a reservoir for faecal indicator bacteria along the California coast. FEMS Microbiology Ecology, 77, 40–49. (PMID: 10.1111/j.1574-6941.2011.01082.x)
      Inostroza, L., & Tábbita, J. H. (2016). Informal urban development in the greater buenos aires area: A quantitative-spatial assessment based on households’ physical features using gis and principal component analysis. Procedia Engineering, 161, 2138–2146. (PMID: 10.1016/j.proeng.2016.08.806)
      ISO 5667–3:2018. (2018). Water quality sampling part 3: Preservation and handling of water samples. [Internet] https://www.iso.org/standard/72370.html . Accessed 28 May 2023.
      Kapembo, M. L., Laffite, A., Bokolo, M. K., Mbanga, A. L., Maya-Vangua, M. M., Otamonga, J. P., & Poté, J. (2016). Evaluation of water quality from suburban shallow wells under tropical conditions according to the seasonal variation, Bumbu, Kinshasa, Democratic Republic of the Congo. Exposure and Health, 8, 487–496. (PMID: 10.1007/s12403-016-0213-y)
      Kayembe, J. M., Thevenon, F., Laffite, A., Sivalingam, P., Ngelinkoto, P., Mulaji, C. K., Otamonga, J. P., Mubedi, J. I., & Poté, J. (2018). High levels of faecal contamination in drinking groundwater and recreational water due to poor sanitation, in the sub-rural neighbourhoods of Kinshasa, Democratic Republic of the Congo. International Journal of Hygiene and Environmental Health, 221, 400–408. (PMID: 10.1016/j.ijheh.2018.01.003)
      Kulinkina, A. V., Kosinski, K. C., Plummer, J. D., Durant, J. L., Bosompem, K. M., Adjei, M. N., Griffiths, J. K., Gute, D. M., & Naumova, E. N. (2017). Indicators of improvedwater access in the context of schistosomiasis transmission in rural Eastern Region, Ghana. Science of the Total Environment, 579, 1745–1755. (PMID: 10.1016/j.scitotenv.2016.11.140)
      Layton, B. A., Walters, S. P., Lam, L. H., & Boehm, A. B. (2010). Enterococcus species distribution among human and animal hosts using multiplex PCR. Journal of Applied Microbiology, 109, 539–574. (PMID: 10.1111/j.1365-2672.2010.04675.x)
      Leclerc, H., Devriese, L. A., & Mossel, D. A. A. (1996). Taxonomical changes in intestinal (faecal) enterococci and streptococci: Consequences on their use as indicators of faecal contamination in drinking water. Journal of Applied Bacteriology, 81, 459–466. (PMID: 10.1111/j.1365-2672.1996.tb03533.x)
      Liu, C., Lin, K., & Kuo, Y. (2003). Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Science of the Total Environment, 313, 77–89. (PMID: 10.1016/S0048-9697(02)00683-6)
      Lutterodt, G., Miyittah, M. K., Addy, B., Ansa, E. D. O., & Takase, M. (2021). Groundwater pollution assessment in a coastal aquifer in Cape Coast. Ghana. Heliyon, 7, e06751. (PMID: 10.1016/j.heliyon.2021.e06751)
      Mangukiya, R., Bhattacharya, T., & Chakraborty, S. (2012). Quality characterization of groundwater using water quality index in Surat City, Gujarat, India. International Research Journal of Environment Sciences, 4, 14–23.
      Masocha, M., Dube, T., & Dube, T. (2019). Integrating microbiological and physico-chemical parameters for enhanced spatial prediction of groundwater quality in Harare. Physics and Chemistry of the Earth, 112, 125–133. (PMID: 10.1016/j.pce.2019.03.003)
      Menció, A., & Mas-Pla, J. (2008). Assessment by multivariate analysis of groundwater-surface water interactions in urbanised Mediterranean streams. Journal of Hydrology, 352, 355–366. (PMID: 10.1016/j.jhydrol.2008.01.014)
      Nawab, B., Esser, K. B., & Baig, S. A. (2017). Impact of pit latrines on drinking water contaminations in Khyber Pakhtunkhwa, Pakistan. Environmental Forensics, 18, 296–306. (PMID: 10.1080/15275922.2017.1368042)
      Ngelinkoto, P., Thevenon, F., Devarajan, N., Birane, N., Maliani, J., Buluku, A., Musibono, D., Mubedi, J. I., & Poté, J. (2014). Trace metal pollution in aquatic sediments and some fish species from the Kwilu- Ngongo River, Democratic Republic of Congo (Bas-Congo). Toxicological & Environmental Chemistry, 96, 48–57. (PMID: 10.1080/02772248.2014.910211)
      Niu, B., Wang, H., Loáiciga, H. A., Hong, S., & Shao, W. (2017). Temporal variations of groundwater quality in the Western Jianghan Plain, China. Science of the Total Environment, 578, 542–550. (PMID: 10.1016/j.scitotenv.2016.10.225)
      Noble, R. T., Leecaster, M. K., McGee, C. D., Weisberg, S. B., & Ritter, K. (2004). Comparison of bacterial indicator analysis methods in stormwater- affected coastal waters. Water Research, 38, 1183–1188. https://doi.org/10.1016/j.watres.2003.11.038. (PMID: 10.1016/j.watres.2003.11.038)
      Pandey, P. K., Kass, P. H., Soupir, M. L., Biswas, S., & Singh, V. P. (2014). Contamination of water resources by pathogenic bacteria. AMB Express, 4, 51. (PMID: 10.1186/s13568-014-0051-x)
      Raju, N. J., Patel, P., Gurung, D., Ramb, P., Gossel, W., & Wycisk, P. (2015). Geochemical assessment of groundwater quality in the Dun valley of central Nepal using chemometric method and geochemical modelling. Groundwater for Sustainable Development, 1, 135–145. (PMID: 10.1016/j.gsd.2016.02.002)
      Sarath-Prasanth, S. V., Magesh, N. S., Jitheshlal, K. V., Chandrasekar, N., & Gangadhar, K. (2012). Evaluation of groundwater quality and its suitability for drinking and agricultural use in the coastal stretch of Alappuzha District, Kerala, India. Applied Water Science, 2, 165–175. (PMID: 10.1007/s13201-012-0042-5)
      Tirkey, P., Bhattacharya, T., Chakraborty, S., & Baraik, S. (2017). Assessment of groundwater quality and associated health risks: A case study of Ranchi city, Jharkhand, India. Groundwater for Sustainable Development, 5, 85–100. (PMID: 10.1016/j.gsd.2017.05.002)
      Turkish Standard (2005). Water intended for human consumption regulation. Official Gazette Date: 17.02.2005 Official Gazzette Number: 25730 [Internet]. Available from: https://www.resmigazete.gov.tr/eskiler/2019/07.
      WHO. (2011). WHO Guidelines for Drinking-water Quality (4th ed.). Geneva, Switzerland: WHO chronicle.
      Zaidi, F. K., Nazzal, Y., Jafri, M. K., Naeem, M., & Ahmed, I. (2015). Reverse ion exchange as a major process controlling the groundwater chemistry in an arid environment: A case study from northwestern Saudi Arabia. Environmental Monitoring and Assessment, 187, 607. https://doi.org/10.1007/s10661-015-4828-4. (PMID: 10.1007/s10661-015-4828-4)
    • Contributed Indexing:
      Keywords: Groundwater quality; Microbiological contamination; Principal component analysis; Water chemistry; Water quality index
    • الرقم المعرف:
      0 (Drinking Water)
      0 (Water Pollutants, Chemical)
    • الموضوع:
      Date Created: 20230609 Date Completed: 20230612 Latest Revision: 20230612
    • الموضوع:
      20250114
    • الرقم المعرف:
      10.1007/s10661-023-11323-5
    • الرقم المعرف:
      37294361