Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Facile synthesis of Ag@Fe 3 O 4 /ZnO nanomaterial for label-free electrochemical detection of methemoglobin in anemic patients.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      Methemoglobinemia (MetHb, Fe 3+ ) is a chronic disease arising from the unequal distribution of oxyhemoglobin (HbFe 2+ , OHb) in the blood circulatory system. The oxidation of standard oxyhemoglobin forms methemoglobin, causing cyanosis (skin bluish staining). Methemoglobin cannot bind the pulmonary gaseous ligands such as oxygen (O 2 ) and carbon monoxide (CO). As an oxidizing agent, the biochemical approach (MetHb, Fe 3+ ) is modified in vitro by sodium nitrite (NaNO 2 ). The silver-doped iron zinc oxide (Ag@Fe 3 O 4 /ZnO) is hydrothermally synthesized and characterized by analytical and spectroscopic techniques for the electrochemical sensing of methemoglobin via cyclic voltammetry (CV). Detection parameters such as concentration, pH, scan rate, electrochemical active surface area (ECSA), and electrochemical impedance spectroscopy (EIS) are optimized. The linear limit of detection for Ag@Fe 3 O 4 /ZnO is 0.17 µM. The stability is determined by 100 cycles of CV and chronoamperometry for 40 h. The serum samples of anemia patients with different hemoglobin levels (Hb) are analyzed using Ag@Fe 3 O 4 /ZnO modified biosensor. The sensor's stability, selectivity, and response suggest its use in methemoglobinemia monitoring.
      (© 2023. The Author(s).)
    • References:
      CHAIN, N.O.V.B.G. Rodak’s hematology clinical principles and applications. Platelets 19, 115–145 (2020).
      Rangan, A. et al. Interpreting sulfhemoglobin and methemoglobin in patients with cyanosis: An overview of patients with M-hemoglobin variants. Int. J. Lab. Hematol. 43(4), 837–844 (2021). (PMID: 3409202910.1111/ijlh.13581)
      Asnaashari, M. et al. An electrochemical biosensor based on hemoglobin-oligonucleotides-modified electrode for detection of acrylamide in potato fries. Food Chem. 271, 54–61 (2019). (PMID: 3023671310.1016/j.foodchem.2018.07.150)
      Hussain, K. K. et al. Electrochemical detection of hemoglobin: A review. Electroanalysis 29(10), 2190–2199 (2017). (PMID: 10.1002/elan.201700308)
      Ahmed, M.H., Ghatge, M.S. & Safo, M.S. Hemoglobin: Structure, function and allostery. Vertebr. Invertebr. Respirat. Proteins Lipoproteins Other Body Fluid Proteins 94, 345–382 (2020). (PMID: 10.1007/978-3-030-41769-7_14)
      Eissa, S. & Zourob, M. Aptamer-based label-free electrochemical biosensor array for the detection of total and glycated hemoglobin in human whole blood. Sci. Rep. 7(1), 1–8 (2017). (PMID: 10.1038/s41598-017-01226-0)
      Melkani, D. C. et al. Study of proteomic diversity for sickle cell disease in tribe and non-tribe population of Kumaun Region of Uttarakhand. Bull. Environ. Pharmacol. Life Sci. 9(12), 7–13 (2020).
      Gupta, A. Biochemical Parameters and the Nutritional Status of Children: Novel Tools for Assessment (CRC Press, 2020). (PMID: 10.4324/9780367419820)
      Kiese, M. Methemoglobinemia: A Comprehensive Treatise: Causes, Consequences, and Correction of Increased Contents of Ferrihemoglobin in Blood (CRC Press, 2019). (PMID: 10.1201/9780429276569)
      Posta, N. et al. Hemoglobin oxidation generates globin-derived peptides in atherosclerotic lesions and intraventricular hemorrhage of the brain, provoking endothelial dysfunction. Lab. Invest. 100(7), 986–1002 (2020). (PMID: 32054994731132510.1038/s41374-020-0403-x)
      Kashari, O.F., et al. Occurrence of methemoglobinemia due to COVID-19: A case report. Cureus. 14(3), e23155 (2022). (PMID: 354449089009966)
      Ara, T., Haque, Q. S. & Afrose, S. A rare case of congenital methemoglobinemia with secondary polycythemia-case report and literature review. Haematol. J. Bangladesh 3(01), 20–23 (2019). (PMID: 10.37545/haematoljbd201930)
      Soliman, D. S. & Yassin, M. Congenital methemoglobinemia misdiagnosed as polycythemia vera: Case report and review of literature. Hematol. Rep. 10(1), 7221 (2018). (PMID: 29721250590764210.4081/hr.2018.7221)
      Iolascon, A. et al. Recommendations for diagnosis and treatment of methemoglobinemia. Am. J. Hematol. 96(12), 1666–1678 (2021). (PMID: 34467556929188310.1002/ajh.26340)
      Achille, I., et al. Recommendations for diagnosis and treatment of methemoglobinemia.
      Jensen, B. & Fago, A. Reactions of ferric hemoglobin and myoglobin with hydrogen sulfide under physiological conditions. J. Inorg. Biochem. 182, 133–140 (2018). (PMID: 2945927210.1016/j.jinorgbio.2018.02.007)
      Keszler, A. et al. The reaction between nitrite and oxyhemoglobin: A mechanistic study. J. Biol. Chem. 283(15), 9615–9622 (2008). (PMID: 18203719244228010.1074/jbc.M705630200)
      Pourreza, N. & Golmohammadi, H. Hemoglobin detection using curcumin nanoparticles as a colorimetric chemosensor. RSC Adv. 5(3), 1712–1717 (2015). (PMID: 10.1039/C4RA10386F)
      Myrgorodska, I. et al. Enantioselective gas chromatography in search of the origin of biomolecular asymmetry in outer space. Isr. J. Chem. 56(11–12), 1016–1026 (2016). (PMID: 10.1002/ijch.201600067)
      Zhou, Y. et al. Fabrication of electrochemical interface based on boronic acid-modified pyrroloquinoline quinine/reduced graphene oxide composites for voltammetric determination of glycated hemoglobin. Biosens. Bioelectron. 64, 442–448 (2015). (PMID: 2528635110.1016/j.bios.2014.09.058)
      Li, J. et al. Recent progress in flexible and stretchable piezoresistive sensors and their applications. J. Electrochem. Soc. 167(3), 037561 (2020). (PMID: 10.1149/1945-7111/ab6828)
      Fatima, B. et al. Tellurium doped zinc imidazole framework (Te@ ZIF-8) for quantitative determination of hydrogen peroxide from serum of pancreatic cancer patients. Sci. Rep. 10(1), 1–9 (2020). (PMID: 10.1038/s41598-020-78115-6)
      Naqvi, S. T. R. et al. Fabrication of iron modified screen printed carbon electrode for sensing of amino acids. Polyhedron 180, 114426 (2020). (PMID: 10.1016/j.poly.2020.114426)
      Klimuntowski, M. et al. Electrochemical sensing of cannabinoids in biofluids: A noninvasive tool for drug detection. ACS Sensors 5(3), 620–636 (2020). (PMID: 3210254210.1021/acssensors.9b02390)
      Gao, Y. et al. Flexible hybrid sensors for health monitoring: Materials and mechanisms to render wearability. Adv. Mater. 32(15), 1902133 (2020). (PMID: 10.1002/adma.201902133)
      Chung, D. & Gray, B. Development of screen-printed flexible multi-level microfluidic devices with integrated conductive nanocomposite polymer electrodes on textiles. J. Electrochem. Soc. 166(9), B3116 (2019). (PMID: 10.1149/2.0191909jes)
      Jain, U. & Chauhan, N. Glycated hemoglobin detection with electrochemical sensing amplified by gold nanoparticles embedded N-doped graphene nanosheet. Biosens. Bioelectron. 89, 578–584 (2017). (PMID: 2689710210.1016/j.bios.2016.02.033)
      Fini, H. & Kerman, K. Revisiting the nitrite reductase activity of hemoglobin with differential pulse voltammetry. Anal. Chim. Acta 1104, 38–46 (2020). (PMID: 3210695510.1016/j.aca.2019.12.071)
      Tom, J. & Andreas, H. A. The influence of carbon-oxygen surface functional groups of carbon electrodes on the electrochemical reduction of hemoglobin. Carbon 112, 230–237 (2017). (PMID: 10.1016/j.carbon.2016.10.090)
      Sun, A. C. & Hall, D. A. Point-of-care smartphone-based electrochemical biosensing. Electroanalysis 31(1), 2–16 (2019). (PMID: 10.1002/elan.201800474)
      Kalambate, P. K. et al. Recent advances in MXene-based electrochemical sensors and biosensors. TrAC, Trends Anal. Chem. 120, 115643 (2019). (PMID: 10.1016/j.trac.2019.115643)
      Lete, C. et al. Nitrite electrochemical sensing platform based on tin oxide films. Sens. Actuators B Chem. 316, 128102 (2020). (PMID: 10.1016/j.snb.2020.128102)
      Rajput, J. K. Alkali metal (Na/K) doped graphitic carbon nitride (g-C3N4) for highly selective and sensitive electrochemical sensing of nitrite in water and food samples. J. Electroanal. Chem. 878, 114605 (2020). (PMID: 10.1016/j.jelechem.2020.114605)
      Shi, F. et al. Pt-doped FeP-C hollow nanorod and hemoglobin based electrochemical biosensor and its applications. Int. J. Electrochem. Sci 17(220840), 2 (2022).
      Rafiq, H. S. et al. Selective electrochemical sensing of hemoglobin from blood of β-thalassemia major patients by tellurium nanowires-graphene oxide modified electrode. Chem. Eng. J. 419, 129706 (2021). (PMID: 10.1016/j.cej.2021.129706)
      Amini, N. & Maleki, A. Electrochemical behavior of ticlopidine and detection of ethanol based on Hemoglobin/Ticlopidine/Titanium oxide NPs nanobiocomposite modified electrode. J. Electroanal. Chem. 877, 114463 (2020). (PMID: 10.1016/j.jelechem.2020.114463)
      Chen, W. et al. Boron-doped graphene quantum dots modified electrode for electrochemistry and electrocatalysis of hemoglobin. J. Electroanal. Chem. 823, 137–145 (2018). (PMID: 10.1016/j.jelechem.2018.06.001)
      Canfarotta, F., Rapini, R. & Piletsky, S. Recent advances in electrochemical sensors based on chiral and nano-sized imprinted polymers. Curr. Opin. Electrochem. 7, 146–152 (2018). (PMID: 10.1016/j.coelec.2017.11.018)
      Guzmán, M. G., Dille, J. & Godet, S. Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int. J. Chem. Biomol. Eng. 2(3), 104–111 (2009).
      Gu, X. et al. Scalable manufacturing platform for the production of methemoglobin as a non-oxygen carrying control material in studies of cell-free hemoglobin solutions. PLoS ONE 17(2), e0263782 (2022). (PMID: 35171971884947810.1371/journal.pone.0263782)
      Mehmood, R. et al. Evaluation of di-potassium and tri-potassium EDTA evacuated tubes for routine haematological testing. J. Clin. Lab. Anal. 32(1), e22188 (2018). (PMID: 2822097710.1002/jcla.22188)
      Saeed, A. & Abolaban, F. Spectroscopic study of the effect of low dose fast neutrons on the hemoglobin structure. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 261, 120082 (2021). (PMID: 10.1016/j.saa.2021.120082)
      Özcan, A., Hamid, F. & Özcan, A. A. Synthesizing of a nanocomposite based on the formation of silver nanoparticles on fumed silica to develop an electrochemical sensor for carbendazim detection. Talanta 222, 121591 (2021). (PMID: 3316726910.1016/j.talanta.2020.121591)
      Sanko, V. et al. An electrochemical sensor for detection of trace-level endocrine disruptor bisphenol A using Mo2Ti2AlC3 MAX phase/MWCNT composite modified electrode. Environ. Res. 212, 113071 (2022). (PMID: 3534665110.1016/j.envres.2022.113071)
      Kubarkov, A. V. et al. Electrochemical synthesis of 3D microstructured composite films of poly (3, 4-ethylenedioxythiophene) and reduced nanographene oxide. Electrochim. Acta 368, 137625 (2021). (PMID: 10.1016/j.electacta.2020.137625)
    • الرقم المعرف:
      9008-37-1 (Methemoglobin)
      SOI2LOH54Z (Zinc Oxide)
      0 (Oxyhemoglobins)
      897WUN6G6T (disilver oxide)
      1K09F3G675 (ferric oxide)
    • الموضوع:
      Date Created: 20230529 Date Completed: 20230531 Latest Revision: 20230614
    • الموضوع:
      20250114
    • الرقم المعرف:
      PMC10227011
    • الرقم المعرف:
      10.1038/s41598-023-35737-w
    • الرقم المعرف:
      37248281