Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Design of an adaptable intrafascicular electrode (AIR) for selective nerve stimulation by model-based optimization.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101238922 Publication Model: eCollection Cited Medium: Internet ISSN: 1553-7358 (Electronic) Linking ISSN: 1553734X NLM ISO Abbreviation: PLoS Comput Biol Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: San Francisco, CA : Public Library of Science, [2005]-
    • الموضوع:
    • نبذة مختصرة :
      Competing Interests: We have read the journal’s policy and the authors of this manuscript have the following competing interests: ETH Zürich filed a patent application (EP22166979.9) of inventors FC, GV, and SR, which relates to some aspects discussed in this article. AC declares no competing interests.
      Peripheral nerve stimulation is being investigated as a therapeutic tool in several clinical scenarios. However, the adopted devices have restricted ability to obtain desired outcomes with tolerable off-target effects. Recent promising solutions are not yet employed in clinical practice due to complex required surgeries, lack of long-term stability, and implant invasiveness. Here, we aimed to design a neural interface to address these issues, specifically dimensioned for pudendal and sacral nerves to potentially target sexual, bladder, or bowel dysfunctions. We designed the adaptable intrafascicular radial electrode (AIR) through realistic computational models. They account for detailed human anatomy, inhomogeneous anisotropic conductance, following the trajectories of axons along curving and branching fascicles, and detailed biophysics of axons. The model was validated against available experimental data. Thanks to computationally efficient geometry-based selectivity estimations we informed the electrode design, optimizing its dimensions to obtain the highest selectivity while maintaining low invasiveness. We then compared the AIR with state-of-the-art electrodes, namely InterStim leads, multipolar cuffs and transversal intrafascicular multichannel electrodes (TIME). AIR, comprising a flexible substrate, surface active sites, and radially inserted intrafascicular needles, is designed to be implanted in a few standard steps, potentially enabling fast implants. It holds potential for repeatable stimulation outcomes thanks to its radial structural symmetry. When compared in-silico, AIR consistently outperformed cuff electrodes and InterStim leads in terms of recruitment threshold and stimulation selectivity. AIR performed similarly or better than a TIME, with quantified less invasiveness. Finally, we showed how AIR can adapt to different nerve sizes and varying shapes while maintaining high selectivity. The AIR electrode shows the potential to fill a clinical need for an effective peripheral nerve interface. Its high predicted performance in all the identified requirements was enabled by a model-based approach, readily applicable for the optimization of electrode parameters in any peripheral nerve stimulation scenario.
      (Copyright: © 2023 Ciotti et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
    • References:
      Biosens Bioelectron. 2010 Sep 15;26(1):62-9. (PMID: 20627510)
      J Neural Eng. 2011 Jun;8(3):036023. (PMID: 21558601)
      Am J Physiol Renal Physiol. 2014 Oct 15;307(8):F921-30. (PMID: 25143456)
      Curr Biol. 2021 Mar 8;31(5):1065-1071.e4. (PMID: 33417885)
      Nat Med. 2022 Feb;28(2):260-271. (PMID: 35132264)
      Lancet. 2013 Jan 12;381(9861):153-65. (PMID: 23040455)
      Neurourol Urodyn. 2007;26(4):562-569. (PMID: 17262838)
      Sci Adv. 2021 Apr 21;7(17):. (PMID: 33883127)
      J Neural Eng. 2020 Nov 19;17(6):. (PMID: 33108764)
      J Vis Exp. 2018 Apr 23;(134):. (PMID: 29733311)
      J Sex Med. 2010 Jan;7(1 Pt 2):314-26. (PMID: 20092441)
      Sci Transl Med. 2019 Oct 2;11(512):. (PMID: 31578244)
      Science. 2020 Oct 16;370(6514):290-291. (PMID: 33060348)
      Neurourol Urodyn. 2005;24(4):305-9. (PMID: 15977260)
      Nat Med. 2019 Sep;25(9):1356-1363. (PMID: 31501600)
      IEEE Trans Neural Syst Rehabil Eng. 2008 Apr;16(2):195-204. (PMID: 18403289)
      Microsyst Nanoeng. 2022 Dec 22;8:131. (PMID: 36568135)
      Surg Radiol Anat. 2008 Nov;30(8):619-26. (PMID: 18648720)
      IEEE Trans Neural Syst Rehabil Eng. 2012 May;20(3):395-404. (PMID: 22481834)
      J Sex Med. 2022 May;19(5):686-696. (PMID: 35288047)
      IEEE Trans Neural Syst Rehabil Eng. 2011 Aug;19(4):333-44. (PMID: 21693427)
      Science. 2021 Aug 6;373(6555):634-635. (PMID: 34353946)
      Sci Transl Med. 2021 Oct 27;13(617):eabg6463. (PMID: 34705521)
      iScience. 2023 Feb 21;26(3):106248. (PMID: 36923003)
      PLoS Comput Biol. 2021 Sep 7;17(9):e1009285. (PMID: 34492004)
      Arch Sex Behav. 2010 Apr;39(2):240-55. (PMID: 19777335)
      J Rehabil Res Dev. 2012;49(2):309-21. (PMID: 22773531)
      IEEE Trans Neural Syst Rehabil Eng. 2008 Dec;16(6):572-81. (PMID: 19144589)
      Sci Rep. 2021 Jun 21;11(1):12925. (PMID: 34155231)
      Neurourol Urodyn. 2018 Feb;37(S2):S17-S22. (PMID: 29336058)
      J Urol. 2007 Nov;178(5):2029-34. (PMID: 17869298)
      Am J Physiol. 1993 Feb;264(2 Pt 2):H419-22. (PMID: 8383456)
      Brain Stimul. 2020 Nov - Dec;13(6):1617-1630. (PMID: 32956868)
      Physiology (Bethesda). 2019 Mar 1;34(2):150-162. (PMID: 30724129)
      Nat Protoc. 2020 Oct;15(10):3129-3153. (PMID: 32989306)
      J Sex Med. 2016 Feb;13(2):135-43. (PMID: 26953828)
      Int Urogynecol J. 2010 Dec;21 Suppl 2:S453-60. (PMID: 20972542)
      Muscle Nerve. 2003 Nov;28(5):525-41. (PMID: 14571454)
      J Neural Eng. 2019 Feb;16(1):016007. (PMID: 30507555)
      J Clin Neurophysiol. 2010 Apr;27(2):130-8. (PMID: 20505378)
      Anat Cell Biol. 2015 Jun;48(2):114-23. (PMID: 26140222)
      Int J Impot Res. 2003 Feb;15(1):63-71. (PMID: 12605242)
      Int J Impot Res. 2003 Oct;15(5):355-61. (PMID: 14562137)
      Neurourol Urodyn. 2005;24(7):643-7. (PMID: 16178000)
      World J Urol. 2005 Dec;23(6):411-8. (PMID: 16333625)
      J Sex Med. 2004 Nov;1(3):237-53. (PMID: 16422954)
      Neurosci Biobehav Rev. 2000 Jul;24(5):507-16. (PMID: 10880817)
      Int J Impot Res. 2000 Feb;12(1):53-7. (PMID: 10982313)
      IEEE Trans Neural Syst Rehabil Eng. 2007 Mar;15(1):76-82. (PMID: 17436879)
      Nat Commun. 2021 Jan 19;12(1):435. (PMID: 33469022)
      Biomaterials. 2022 Dec;291:121874. (PMID: 36334353)
      J Neuroeng Rehabil. 2020 Feb 19;17(1):24. (PMID: 32075654)
      Prog Brain Res. 2015;222:147-62. (PMID: 26541380)
      Acta Anat (Basel). 1997;158(4):274-8. (PMID: 9416358)
      Bioelectron Med. 2020 May 25;6:10. (PMID: 32490037)
      J Sex Med. 2010 Apr;7(4 Pt 2):1598-607. (PMID: 20388160)
      Sleep. 1993 Feb;16(2):171-83. (PMID: 8446838)
      J Neurosci Methods. 2021 Mar 15;352:109079. (PMID: 33516735)
      J Neurophysiol. 2002 Feb;87(2):995-1006. (PMID: 11826063)
      Scott Med J. 1962 Jun;7:250-65. (PMID: 13897116)
    • الموضوع:
      Date Created: 20230525 Date Completed: 20230609 Latest Revision: 20230613
    • الموضوع:
      20250114
    • الرقم المعرف:
      PMC10246853
    • الرقم المعرف:
      10.1371/journal.pcbi.1011184
    • الرقم المعرف:
      37228174