Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Use of limekiln dust in the stabilization of heavy metals in Ghanaian gold oxide ore mine tailings.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Springer Country of Publication: Netherlands NLM ID: 8508350 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2959 (Electronic) Linking ISSN: 01676369 NLM ISO Abbreviation: Environ Monit Assess Subsets: MEDLINE
    • بيانات النشر:
      Publication: 1998- : Dordrecht : Springer
      Original Publication: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-
    • الموضوع:
    • نبذة مختصرة :
      Remedial action for heavy metal-contaminated soils is imperative for preventing heavy metal leachability and minimizing environmental risks. This study evaluated the use of limekiln dust (LKD) as a heavy metal stabilization agent for Ghanaian gold mine oxide ore tailing material. Heavy metal-laden tailing material (Fe, Ni, Cu, Cd, and Hg) was collected from a tailing dam site in Ghana. Stabilization was done using acid neutralization capacity (ANC) and citric acid test (CAT) while all chemical characterization was done using X-ray fluorescence (XRF) spectroscopy. Various physicochemical parameters including pH, EC, and temperature were also measured. The contaminated soils were amended with LKD in doses of 5, 10, 15, and 20 wt.%. The results revealed that the contaminated soils had concentrations of heavy metals above FAO/WHO stipulated limits of 350, 35, 36, 0.8, and 0.3 mg/kg for Fe, Ni, Cu, Cd, and Hg, respectively. After 28 days of curing, 20 wt.% of LKD was found to be appropriate for the remediation of the mine tailings of all the heavy metals studied except Cd. Ten percent of the LKD was noticed to be enough in remedying soil contaminated with Cd since the Cd's concentration reduced from 9.1 to 0.0 mg/kg with a stabilizing efficiency of 100% and a leaching factor of 0.0. Therefore, remediation of contaminated soils of Fe, Cu, Ni, Cd, and Hg with LKD is safe and environmentally friendly.
      (© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
    • References:
      Abbas, M., Parveen, Z., Iqbal, M., Riazuddin, M., Iqbal, S., Ahmed, M., & Bhutto, R. (2010). Monitoring of toxic metals (cadmium, lead, arsenic and mercury) in vegetables of Sindh, Pakistan. Kathmandu University Journal of Science, Engineering and Technology, 6, 60–65. (PMID: 10.3126/kuset.v6i2.4013)
      Abdulhamid, Z., Agbaji, E., Gimba, C., & Agbaji, A. (2015). Physicochemical parameters and heavy metals content of soil samples from farms in Minna. International Letters of Chemistry, Physics and Astronomy, 58, 154–163. (PMID: 10.56431/p-12ly57)
      Abrahim, G., & Parker, R. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136, 227–238. (PMID: 10.1007/s10661-007-9678-2)
      Albretsen, J. (2006). The toxicity of iron, an essential element. Veterinary Medicine-Bonner Springs Then Edwardsville-, 101, 82.
      Ampadu, E. K. (2013). Investigation of the x-ray shielding properties of concrete containing lime kiln dust. University of Ghana.
      Amponsah, L. O., Dodd, M., & Darko, G. (2022). Gastric bioaccessibility and human health risks associated with soil metal exposure via ingestion at an E-waste recycling site in Kumasi, Ghana. Environmental Geochemistry and Health, 44, 497–509. (PMID: 10.1007/s10653-020-00760-7)
      Amponsah, P. E. (2002). Seismic activity in relation to fault systems in southern Ghana. Journal of African Earth Sciences, 35, 227–234. (PMID: 10.1016/S0899-5362(02)00100-8)
      Asiamah, G. (2013). Heavy metal concentration in the Owere River at Konongo. Department of Theoretical and Applied Biology, Institute of Distance Learning, KNUST.
      Asiedu, D., Kutu, J., Manu, J., & Hayford, E. (2009). Geochemistry and provenance of metagreywackes from the Konongo area, Southwestern Ghana. African Journal of Science and Technology, 10(1), 37–44.
      Ayobami, A. O. (2022). An assessment of trace metal pollution indicators in soils around oil well clusters. Petroleum Research, 7, 275–285. (PMID: 10.1016/j.ptlrs.2021.09.001)
      Baah, D. S., Gikunoo, E., Foli, G., Arthur, E. K., & Entsie, P. (2021). Health risk assessment of trace metals in selected food crops at Abuakwa South Municipal, Ghana. Environmental Monitoring and Assessment, 193, 1–13. (PMID: 10.1007/s10661-021-09373-8)
      Beesley, L., Moreno-Jiménez, E., Gomez-Eyles, J. L., Harris, E., Robinson, B., & Sizmur, T. (2011). A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 159, 3269–3282. (PMID: 10.1016/j.envpol.2011.07.023)
      Bempah, C. K., Ewusi, A., Obiri-Yeboah, S., Asabere, S. B., Mensah, F., Boateng, J., & Voigt, H.-J. (2013). Distribution of arsenic and heavy metals from mine tailings dams at Obuasi Municipality of Ghana. American Journal of Engineering Research, 2, 61–70.
      Benshaul-Tolonen, A., Chuhan-Pole, P., Dabalen, A., Kotsadam, A., & Sanoh, A. (2019). The local socioeconomic effects of gold mining: Evidence from Ghana. The Extractive Industries and Society, 6, 1234–1255. (PMID: 10.1016/j.exis.2019.07.008)
      Boadi, B., Wemegah, D. D., & Preko, K. (2013). Geological and structural interpretation of the Konongo area of the Ashanti gold belt of Ghana from aeromagnetic and radiometric data. International Research Journal of Geology and Mining, 3(3), 124–135.
      Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., Kirkham, M. B., & Scheckel, K. (2014). Remediation of heavy metal (loid) s contaminated soils–to mobilize or to immobilize? Journal of Hazardous Materials, 266, 141–166. (PMID: 10.1016/j.jhazmat.2013.12.018)
      Bolan, N. S., Adriano, D. C., & Curtin, D. (2003). Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability. Advances in Agronomy, 78, 5–272.
      Campbell, K. M., Gallegos, T. J., & Landa, E. R. (2015). Biogeochemical aspects of uranium mineralization, mining, milling, and remediation. Applied Geochemistry, 57, 206–235. (PMID: 10.1016/j.apgeochem.2014.07.022)
      Cao, X., Ma, L. Q., Rhue, D. R., & Appel, C. S. (2004). Mechanisms of lead, copper, and zinc retention by phosphate rock. Environmental Pollution, 131, 435–444. (PMID: 10.1016/j.envpol.2004.03.003)
      Carmo, D. L. D., Silva, C. A., Lima, J. M. D., & Pinheiro, G. L. (2016). Electrical conductivity and chemical composition of soil solution: Comparison of solution samplers in tropical soils. Revista brasileira de Ciência do Solo, 40. https://doi.org/10.1590/18069657rbcs20140795.
      CEN/TS. (2008). UNE-CEN/TS 15364 Caracterización De Residuos. Ensayos Del Comportamiento Durante La Lixiviación. Ensayo De Capacidad De Neutralización Ácida Y Basica. 2008.
      Chotpantarat, S., Chunhacherdchai, L., Wikiniyadhanee, R., & Tongcumpou, C. (2015). Effects of humic acid amendment on the mobility of heavy metals (Co, Cu, Cr, Mn, Ni, Pb, and Zn) in gold mine tailings in Thailand. Arabian Journal of Geosciences, 8, 7589–7600. (PMID: 10.1007/s12517-014-1750-y)
      Clifford, M. J. (2017). Assessing releases of mercury from small-scale gold mining sites in Ghana. The Extractive Industries and Society, 4, 497–505. (PMID: 10.1016/j.exis.2017.05.007)
      Cobbinah, P. B., & Amoako, C. (2018). From Gold Coast to Ghana: Changing political economy of mining towns. Cities, 83, 83–91. (PMID: 10.1016/j.cities.2018.06.011)
      Corwin, D. L. (2008). Past, present, and future trends in soil electrical conductivity measurements using geophysical methods. CRC Press, Taylor & Francis Group.
      Del Valle-Zermeño, R., Giro-Paloma, J., Formosa, J., & Chimenos, J. (2015). Low-grade magnesium oxide by-products for environmental solutions: Characterization and geochemical performance. Journal of Geochemical Exploration, 152, 134–144. (PMID: 10.1016/j.gexplo.2015.02.007)
      Dominy, S., & Van Lente, B. (2014). Annual qualified persons report for the Obenemase A and B lodes, Konongo gold project, Ghana-year ended 31 March 2014-LionGold Corporation Limited.
      Du, Y.-J., Liu, S.-Y., Liu, Z.-B., Chen, L., Zhang, F., & Jin, F. (2010). An overview of stabilization/solidification technique for heavy metals contaminated soils. Advances in Environmental Geotechnics, Springer, Berlin, Heidelberg, 760–766. https://doi.org/10.1007/978-3-642-04460-1_93.
      ENCHIPROJECT. (2020). Ghana: #1 gold producer in Africa [Online]. Newcore Gold. Available: https://newcoregold.com/enchi-project/ghana-1-gold-producer-in-africa/#disclaimer-1 . [Accessed September 1, 2022].
      Eshun, S., Gidigasu, S. S. R., & Gawu, S. (2018). The effect of clay pozzolana-cement-composite on the strength development of a hydraulic backfill. Ghana Mining Journal, 18, 32–38. (PMID: 10.4314/gm.v18i1.4)
      FAO/WHO. (2011). Joint FAO/WHO food standards programme codex committee on contaminants in foods. Working document for information and use in discussions related to contaminants and toxins in the Gsctff. Fifth Session. Hague, The Netherlands. pp. 90.
      Fashola, M. O., Ngole-Jeme, V. M., & Babalola, O. O. (2016). Heavy metal pollution from gold mines: Environmental effects and bacterial strategies for resistance. International Journal of Environmental Research and Public Health, 13, 1047. (PMID: 10.3390/ijerph13111047)
      Formosa, J., Chimenos, J., Lacasta, A., & Haurie, L. (2011). Thermal study of low-grade magnesium hydroxide used as fire retardant and in passive fire protection. Thermochimica Acta, 515, 43–50. (PMID: 10.1016/j.tca.2010.12.018)
      Fujimori, Y., Zhao, X., Shao, X., Levchenko, S. V., Nilius, N., Sterrer, M., & Freund, H.-J. (2016). Interaction of water with the CaO (001) surface. The Journal of Physical Chemistry C, 120, 5565–5576. (PMID: 10.1021/acs.jpcc.6b00433)
      García Sánchez, A., & Álvarez Ayuso, E. (2008). Soil remediation in mining polluted areas. Macla, 10, 76–84.
      Garside, M. (2021). World mine reserves of gold by country 2020 [Online]. Available: https://www.statista.com/statistics/415935/top-gold-mines-in-ghana-by-production-volume/ . [Accessed 4th March 2021].
      Ghana Statistical Service, G. (2021). Ghana Statistical Service (GSS) 2021 population and housing census. 9/22/2021 ed.
      Ghanadistricts. (2006). Ghana districts a resource base to call all local assemblies in Ghana.
      Ginocchio, R., León-Lobos, P., Arellano, E. C., Anic, V., Ovalle, J. F., & Baker, A. J. M. (2017). Soil physicochemical factors as environmental filters for spontaneous plant colonization of abandoned tailing dumps. Environmental Science and Pollution Research, 24, 13484–13496. (PMID: 10.1007/s11356-017-8894-8)
      Giro-Paloma, J., Formosa, J., & Chimenos, J. M. (2020). Stabilization study of a contaminated soil with metal (loid) s adding different low-grade MgO degrees. Sustainability, 12, 7340. (PMID: 10.3390/su12187340)
      Hadzi, G. Y., Essumang, D. K., & Ayoko, G. A. (2018). Assessment of contamination and health risk of heavy metals in selected water bodies around gold mining areas in Ghana. Environmental Monitoring and Assessment, 190, 1–17. (PMID: 10.1007/s10661-018-6750-z)
      Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14, 975–1001. (PMID: 10.1016/0043-1354(80)90143-8)
      Haynes, W., Lide, D., & Bruno, T. (2013). 1-Chloro-4-(trichloromethyl)-benzene (CAS 5216–25–1). CRC handbook of chemistry and physics (94th ed., 94, 3–120).
      Hilson, G. (2002). Harvesting mineral riches: 1000 years of gold mining in Ghana. Resources Policy, 28, 13–26. (PMID: 10.1016/S0301-4207(03)00002-3)
      Ho, H. H., Swennen, R., & Van Damme, A. (2010). Distribution and contamination status of heavy metals in estuarine sediments near Cua Ong Harbor, Ha Long Bay, Vietnam. Geologica Belgica, 13, 37–47.
      Hou, D., O’Connor, D., Igalavithana, A. D., Alessi, D. S., Luo, J., Tsang, D. C., Sparks, D. L., Yamauchi, Y., Rinklebe, J., & Ok, Y. S. (2020). Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nature Reviews Earth & Environment, 1, 366–381. (PMID: 10.1038/s43017-020-0061-y)
      Houben, D., Evrard, L., & Sonnet, P. (2013). Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere, 92, 1450–1457. (PMID: 10.1016/j.chemosphere.2013.03.055)
      Ulusay, R. & J. A. Hudson (Eds.), The complete ISRM suggested methods for rock characterization, testing and Monitoring, 1974–2006.
      Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7, 60. (PMID: 10.2478/intox-2014-0009)
      Jampani, M. (2019). Integrated evaluation of wastewater irrigation for sustainable agriculture and groundwater development.
      Joy, O. C., Nnabugwu, A. E., & Uchenna, A. P. (2017). Accumulation and toxicological risk assessment of Cd, As, Pb, Hg, and Cu from topsoils of school playgrounds at Obio-Akpor LGA Rivers State Nigeria. Internationational Journal of Scientific World, 5(1), 38–46. (PMID: 10.14419/ijsw.v5i1.6710)
      Kabata-Pendias, A. (2010). Trace elements in soils and plants. CRC Press. (PMID: 10.1201/b10158)
      Komárek, M., Vaněk, A., & Ettler, V. (2013). Chemical stabilization of metals and arsenic in contaminated soils using oxides–A review. Environmental Pollution, 172, 9–22. (PMID: 10.1016/j.envpol.2012.07.045)
      Kükrer, S., Şeker, S., Abacı, Z. T., & Kutlu, B. (2014). Ecological risk assessment of heavy metals in surface sediments of northern littoral zone of Lake Çıldır, Ardahan, Turkey. Environmental Monitoring and Assessment, 186, 3847–3857. (PMID: 10.1007/s10661-014-3662-4)
      Kumpiene, J., Antelo, J., Brännvall, E., Carabante, I., Ek, K., Komárek, M., Söderberg, C., & Wårell, L. (2019). In situ chemical stabilization of trace element-contaminated soil–Field demonstrations and barriers to transition from laboratory to the field–A review. Applied Geochemistry, 100, 335–351. (PMID: 10.1016/j.apgeochem.2018.12.003)
      Li, J., Zhang, W., & Monteiro, P. J. (2021). Preferred orientation of calcium aluminosilicate hydrate compacts: Implications for creep and indentation. Cement and Concrete Research, 143, 106371. (PMID: 10.1016/j.cemconres.2021.106371)
      Li, Y., Cui, S., Chang, S. X., & Zhang, Q. (2019). Liming effects on soil pH and crop yield depend on lime material type, application method and rate, and crop species: A global meta-analysis. Journal of Soils and Sediments, 19, 1393–1406. (PMID: 10.1007/s11368-018-2120-2)
      Lim, J. E., Ahmad, M., Usman, A. R., Lee, S. S., Jeon, W.-T., Oh, S.-E., Yang, J. E., & Ok, Y. S. (2013). Effects of natural and calcined poultry waste on Cd, Pb and As mobility in contaminated soil. Environmental Earth Sciences, 69, 11–20. (PMID: 10.1007/s12665-012-1929-z)
      Liu, W.-H., Zhao, J.-Z., Ouyang, Z.-Y., Söderlund, L., & Liu, G.-H. (2005). Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing, China. Environment International, 31, 805–812. (PMID: 10.1016/j.envint.2005.05.042)
      Luo, H., Wang, Q., Guan, Q., Ma, Y., Ni, F., Yang, E., & Zhang, J. (2022). Heavy metal pollution levels, source apportionment and risk assessment in dust storms in key cities in Northwest China. Journal of Hazardous Materials, 422, 126878. (PMID: 10.1016/j.jhazmat.2021.126878)
      Makusa, G. P. (2012). Soil stabilization methods and materials. Lulea University of Technology.
      Mantey, J., Owusu-Nimo, F., Nyarko, K., & Aubynn, A. (2017). Operational dynamics of “Galamsey” within eleven selected districts of western region of Ghana. Journal of Mining and Environment, 8, 11–34.
      Mofor, N. A., Tamungang, E. B. N., Mvondo-Zé, A. D., Kome, G. K., & Mbene, K. (2017). Assessment of physico-chemical and heavy metals properties of some agricultural soils of Awing-North West Cameroon. Archives of Agriculture and Environmental Science, 2, 277–286. (PMID: 10.26832/24566632.2017.020405)
      Monsefi, M., Alaee, S., Moradshahi, A., & Rohani, L. (2010). Cadmium-induced infertility in male mice. Environmental Toxicology: An International Journal, 25, 94–102.
      Moon, D. H., Park, J.-W., Chang, Y.-Y., Ok, Y. S., Lee, S. S., Ahmad, M., Koutsospyros, A., Park, J.-H., & Baek, K. (2013). Immobilization of lead in contaminated firing range soil using biochar. Environmental Science and Pollution Research, 20, 8464–8471. (PMID: 10.1007/s11356-013-1964-7)
      Morel, J.-C., Pkla, A., & Walker, P. (2007). Compressive strength testing of compressed earth blocks. Construction and Building Materials, 21, 303–309. (PMID: 10.1016/j.conbuildmat.2005.08.021)
      Mugoša, B., Đurović, D., Nedović-Vuković, M., Barjaktarović-Labović, S., & Vrvić, M. (2016). Assessment of ecological risk of heavy metal contamination in coastal municipalities of Montenegro. International Journal of Environmental Research and Public Health, 13, 393. (PMID: 10.3390/ijerph13040393)
      Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2, 108–118.
      Nazir, R., Khan, M., Masab, M., Rehman, H. U., Rauf, N. U., Shahab, S., Ameer, N., Sajed, M., Ullah, M., & Rafeeq, M. (2015). Accumulation of heavy metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the soil, water and plants and analysis of physico-chemical parameters of soil and water collected from Tanda Dam Kohat. Journal of Pharmaceutical Sciences and Research, 7, 89.
      Niu, S., Gao, L., & Zhao, J. (2015). Distribution and risk assessment of heavy metals in the Xinzhuangzi reclamation soil from the Huainan coal mining area, China. Human and Ecological Risk Assessment: An International Journal, 21, 900–912. (PMID: 10.1080/10807039.2014.943572)
      Odom, F., Gikunoo, E., Arthur, E. K., Agyemang, F. O., & Mensah-Darkwa, K. (2021). Stabilization of heavy metals in soil and leachate at Dompoase landfill site in Ghana. Environmental Challenges, 5, 100308. (PMID: 10.1016/j.envc.2021.100308)
      Olatunji, A., Abimbola, A., & Afolabi, O. (2009). Geochemical assessment of industrial activities on the quality of sediments and soils within the LSDPC Industrial Estate, Odogunyan, Lagos, Nigeria. Global Journal of Environmental Research [internet], 3, 252–257.
      Onwuka, B., & Mang, B. (2018). Effects of soil temperature on some soil properties and plant growth. Advances in Plants & Agriculture Research, 8, 34–37. (PMID: 10.15406/apar.2018.08.00288)
      Opoku, P., Gikunoo, E., Arthur, E. K., & Foli, G. (2020). Removal of selected heavy metals and metalloids from an artisanal gold mining site in Ghana using indigenous plant species. Cogent Environmental Science, 6, 1840863. (PMID: 10.1080/23311843.2020.1840863)
      Oves, M., Khan, M. S., Zaidi, A., & Ahmad, E. (2012). Soil contamination, nutritive value, and human health risk assessment of heavy metals: An overview. Springer. (PMID: 10.1007/978-3-7091-0730-0_1)
      Peng, L., Liu, P., Feng, X., Wang, Z., Cheng, T., Liang, Y., Lin, Z., & Shi, Z. (2018). Kinetics of heavy metal adsorption and desorption in soil: Developing a unified model based on chemical speciation. Geochimica Et Cosmochimica Acta, 224, 282–300. (PMID: 10.1016/j.gca.2018.01.014)
      Rabee, A. M., Al-Fatlawy, Y. F., & Nameer, M. (2011). Using Pollution Load Index (PLI) and geoaccumulation index (I-Geo) for the assessment of heavy metals pollution in Tigris river sediment in Baghdad Region. Al-Nahrain Journal of Science, 14, 108–114.
      Raikwar, M. K., Kumar, P., Singh, M., & Singh, A. (2008). Toxic effect of heavy metals in livestock health. Veterinary World, 1, 28. (PMID: 10.5455/vetworld.2008.28-30)
      Razanamahandry, L. C., Karoui, H., Andrianisa, H. A., & Yacouba, H. (2017). Bioremediation of soil and water polluted by cyanide: A review. African Journal of Environmental Science and Technology, 11, 272–291. (PMID: 10.5897/AJEST2016.2264)
      Reddy, V. A., Solanki, C. H., Kumar, S., Reddy, K. R., & Du, Y.-J. (2020). Stabilization/solidification of zinc-and lead-contaminated soil using limestone calcined clay cement (LC3): An environmentally friendly alternative. Sustainability, 12, 3725. (PMID: 10.3390/su12093725)
      Riba, I., Delvalls, T. Á., Forja, J. M., & Gómez-Parra, A. (2004). The influence of pH and salinity on the toxicity of heavy metals in sediment to the estuarine clam Ruditapes philippinarum. Environmental Toxicology and Chemistry: An International Journal, 23, 1100–1107. (PMID: 10.1897/023-601)
      Ruan, S., Liang, S., Kastiukas, G., Zhu, W., & Zhou, X. (2020). Solidification of waste excavation clay using reactive magnesia, quicklime, sodium carbonate and early-age oven curing. Construction and Building Materials, 258, 120333. (PMID: 10.1016/j.conbuildmat.2020.120333)
      Saeed, K. A., Kassi, K. A., Nur, H., & Al-Hashimi, S. A. M. (2020). Molecular characteristics of cement-lime treated contaminated-lateritic clay soil. IOP Conference Series: Materials Science and Engineering, 012082 (IOP Publishing). 870, 012082.
      Sakan, S. M., Đorđević, D. S., Manojlović, D. D., & Predrag, P. S. (2009). Assessment of heavy metal pollutants accumulation in the Tisza river sediments. Journal of Environmental Management, 90, 3382–3390. (PMID: 10.1016/j.jenvman.2009.05.013)
      Salomons, W., & Förstner, U. (2012). Environmental management of solid waste: Dredged material and mine tailings. Springer Science & Business Media.
      Sándor, R., & Fodor, N. (2012). Simulation of soil temperature dynamics with models using different concepts. The Scientific World Journal, 590287. https://doi.org/10.1100/2012/590287.
      Sani, U., Uzairu, A., & Abba, H. (2012). Physico-chemical parameters of soil in some selected dumpsites in Zaria and its environs. Chemsearch Journal, 3, 1–6.
      Sey, E., & Belford, E. J. (2019). Levels of heavy metals and contamination status of a decommissioned tailings dam in Ghana. EQA-International Journal of Environmental Quality, 35, 33–50.
      Shi, C., & Spence, R. (2004). Designing of cement-based formula for solidification/stabilization of hazardous, radioactive, and mixed wastes. Critical Reviews in Environmental Science and Technology, 34, 391–417. (PMID: 10.1080/10643380490443281)
      Siaw, D. B., Gidigasu, S. S., Gikunoo, E., & Foli, G. (2020). Geochemical assessment of trace metals in soil, stream water and selected food crops at Kibi Goldfields Environment, Ghana. Earth Sciences Malaysia (ESMY), 4, 71–76. (PMID: 10.26480/esmy.01.2020.71.76)
      Strydom, C., van der Merwe, E., & Aphane, M. (2005). The effect of calcining conditions on the rehydration of dead burnt magnesium oxide using magnesium acetate as a hydrating agent. Journal of Thermal Analysis and Calorimetry, 80, 659–662. (PMID: 10.1007/s10973-005-0710-x)
      Tabatabai, M. A. (1987). Physicochemical fate of sulfate in soils. Japca, 37, 34–38. (PMID: 10.1080/08940630.1987.10466197)
      Tack, F., & Verloo, M. G. (1995). Chemical speciation and fractionation in soil and sediment heavy metal analysis: A review. International Journal of Environmental Analytical Chemistry, 59, 225–238. (PMID: 10.1080/03067319508041330)
      Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of Geophysics, 33, 241–265. (PMID: 10.1029/95RG00262)
      Twyman, R. (2005). Sample dissolution for elemental analysis| Wet Digestion.
      Vega, F., Covelo, E., Andrade, M., & Marcet, P. (2004). Relationships between heavy metals content and soil properties in minesoils. Analytica Chimica Acta, 524, 141–150. (PMID: 10.1016/j.aca.2004.06.073)
      Violante, A., Cozzolino, V., Perelomov, L., Caporale, A., & Pigna, M. (2010). Mobility and bioavailability of heavy metals and metalloids in soil environments. Journal of Soil Science and Plant Nutrition, 10, 268–292. (PMID: 10.4067/S0718-95162010000100005)
      Wang, J., Xiong, Z., & Kuzyakov, Y. (2016). Biochar stability in soil: Meta-analysis of decomposition and priming effects. Gcb Bioenergy, 8, 512–523. (PMID: 10.1111/gcbb.12266)
      Wang, Z.-M., Chen, L.-D., Zhang, H.-P., & Sun, R.-H. (2014). Multivariate statistical analysis and risk assessment of heavy metals monitored in surface sediment of the Luan River and its tributaries, China. Human and Ecological Risk Assessment: An International Journal, 20, 1521–1537. (PMID: 10.1080/10807039.2013.867701)
      Winterton, M. (2006). Solubilization of polymers by ionic liquids. Journal of Materials Chemistry, 16, 4281–4293. (PMID: 10.1039/b610143g)
      Xia, W.-Y., Feng, Y.-S., Du, Y.-J., Reddy, K. R., & Wei, M.-L. (2018). Solidification and stabilization of heavy metal–contaminated industrial site soil using KMP binder. Journal of Materials in Civil Engineering, 30, 04018080. (PMID: 10.1061/(ASCE)MT.1943-5533.0002264)
      Xia, W.-Y., Feng, Y.-S., Jin, F., Zhang, L.-M., & Du, Y.-J. (2017). Stabilization and solidification of a heavy metal contaminated site soil using a hydroxyapatite based binder. Construction and Building Materials, 156, 199–207. (PMID: 10.1016/j.conbuildmat.2017.08.149)
      Yang, J., Hou, D., & Ding, Q. (2018). Structure, dynamics, and mechanical properties of cross-linked calcium aluminosilicate hydrate: A molecular dynamics study. ACS Sustainable Chemistry & Engineering, 6, 9403–9417. (PMID: 10.1021/acssuschemeng.8b01749)
      Yilmaz, I. (2009). A new testing method for indirect determination of the unconfined compressive strength of rocks. International Journal of Rock Mechanics and Mining Sciences, 46, 1349–1357. (PMID: 10.1016/j.ijrmms.2009.04.009)
      Yunus, N. Z. M., Yung, Y. C., Wei, N. T., Abdullah, N., Mashros, N., & Kadir, M. A. A. (2015). Shear strength behaviour of canlite-treated laterite soil. Jurnal Teknologi, 72(3), 91–97.
      Zhang, Y., Daniels, J. L., Cetin, B., & Baucom, I. K. (2020). Effect of temperature on pH, conductivity, and strength of lime-stabilized soil. Journal of Materials in Civil Engineering, 32, 04019380. (PMID: 10.1061/(ASCE)MT.1943-5533.0003062)
    • Contributed Indexing:
      Keywords: Acid neutralization capacity; Citric acid test; Heavy metal stabilization; Limekiln dust; Mining
    • الرقم المعرف:
      7440-57-5 (Gold)
      00BH33GNGH (Cadmium)
      0 (Metals, Heavy)
      FXS1BY2PGL (Mercury)
      0 (Dust)
      0 (Oxides)
      0 (Soil)
    • الموضوع:
      Date Created: 20230523 Date Completed: 20230525 Latest Revision: 20230525
    • الموضوع:
      20231215
    • الرقم المعرف:
      10.1007/s10661-023-11306-6
    • الرقم المعرف:
      37219632