Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Non-vernalization requirement for flowering in Brassica rapa conferred by a dominant allele of FLOWERING LOCUS T.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Springer Country of Publication: Germany NLM ID: 0145600 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-2242 (Electronic) Linking ISSN: 00405752 NLM ISO Abbreviation: Theor Appl Genet Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: Berlin, New York, Springer
    • الموضوع:
    • نبذة مختصرة :
      Key Message: We identified and characterized a dominant FT allele for flowering without vernalization in Brassica rapa, while demonstrating its potential for deployment in breeding to accelerate flowering in various Brassicaceae crops. Controlling the timing of flowering is key to improving yield and quality of several agricultural crops including the Brassicas. Many Brassicaceae crops possess a conserved flowering mechanism in which FLOWERING LOCUS C (FLC) represses the transcription of flowering activators such as FLOWERING LOCUS T (FT) during vernalization. Here, we employed genetic analysis based on next-generation sequencing to identify a dominant FT allele, BraA.FT.2-C, for flowering in the absence of vernalization in the Brassica rapa cultivar 'CHOY SUM EX CHINA 3'. BraA.FT.2-C harbors two large insertions upstream of its coding region and is expressed without vernalization, despite FLC expression. We show that BraA.FT.2-C offers an opportunity to introduce flowering without vernalization requirement into winter-type brassica crops, including B. napus, which have many functional FLC paralogs. Furthermore, we demonstrated the feasibility of using B. rapa harboring BraA.FT.2-C as rootstock for grafting to induce flowering in radish (Raphanus sativus), which requires vernalization for flowering. We believe that the ability of BraA.FT.2-C to overcome repression by FLC can have significant applications in brassica crops breeding to increase yields by accelerating or delaying flowering.
      (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Akter A, Itabashi E, Kakizaki T, Okazaki K, Dennis ES, Fujimoto R (2021) Genome triplication leads to transcriptional divergence of FLOWERING LOCUS C genes during vernalization in the genus Brassica. Front Plant Sci 11:619417. (PMID: 10.3389/fpls.2020.619417336337527900002)
      An H, Qi X, Gaynor ML, Hao Y, Gebken SC, Mabry ME, McAlvay AC, Teakle GR, Conant GC, Barker MS, Fu T, Yi B, Pires JC (2019) Transcriptome and organellar sequencing highlights the complex origin and diversification of allotetraploid Brassica napus. Nat Commun 10:2878. (PMID: 10.1038/s41467-019-10757-1312537896599199)
      Bao W, Kojima KK, Kohany O (2015) Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob DNA 6:11. (PMID: 10.1186/s13100-015-0041-9260457194455052)
      Cai X, Lin R, Liang J, King GJ, Wu J, Wang X (2022) Transposable element insertion: a hidden major source of domesticated phenotypic variation in Brassica rapa. Plant Biotechnol J 20:1298–1310. (PMID: 10.1111/pbi.13807352782639241368)
      Calderwood A, Lloyd A, Hepworth J, Tudor EH, Jones DM, Woodhouse S, Bilham L, Chinoy C, Williams K, Corke F, Doonan JH, Ostergaard L, Irwin JA, Wells R, Morris RJ (2021) Total FLC transcript dynamics from divergent paralogue expression explains flowering diversity in Brassica napus. New Phytol 229:3534–3548. (PMID: 10.1111/nph.1713133289112)
      Chawla HS, Lee H, Gabur I, Vollrath P, Tamilselvan-Nattar-Amutha S, Obermeier C, Schiessl SV, Song J, Liu K, Guo L, Parkin IAP, Snowdon RJ (2021) Long-read sequencing reveals widespread intragenic structural variants in a recent allopolyploid crop plant. Plant Biotechnol J 19:240–250. (PMID: 10.1111/pbi.1345632737959)
      Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2012) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. (PMID: 10.1093/bioinformatics/bts635231048863530905)
      Franks SJ, Perez-Sweeney B, Strahl M, Nowogrodzki A, Weber JJ, Lalchan R, Jordan KP, Litt A (2015) Variation in the flowering time orthologs BrFLC and BrSOC1 in a natural population of Brassica rapa. PeerJ 3:e1339. (PMID: 10.7717/peerj.1339266449664671188)
      Helliwell CA, Wood CC, Robertson M, James Peacock W, Dennis ES (2006) The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant J 46:183–192. (PMID: 10.1111/j.1365-313X.2006.02686.x16623882)
      Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300. (PMID: 10.1093/nar/27.1.2979847208148163)
      Hou J, Long Y, Raman H, Zou X, Wang J, Dai S, Xiao Q, Li C, Fan L, Liu B, Meng J (2012) A Tourist-like MITE insertion in the upstream region of the BnFLCA10 gene is associated with vernalization requirement in rapeseed (Brassica napus L.). BMC Plant Biol 12:238. (PMID: 10.1186/1471-2229-12-238232412443562271)
      Itoh N, Segawa T, Tamiru M, Abe A, Sakamoto S, Uemura A, Oikawa K, Kutsuzawa H, Koga H, Imamura T, Terauchi R, Takagi H (2019) Next-generation sequencing-based bulked segregant analysis for QTL mapping in the heterozygous species Brassica rapa. Theor Appl Genet 132:2913–2925. (PMID: 10.1007/s00122-019-03396-z31317235)
      Kitamoto N, Yui S, Nishikawa K, Takahata Y, Yokoi S (2014) A naturally occurring long insertion in the first intron in the Brassica rapa FLC2 gene causes delayed bolting. Euphytica 196:213–223. (PMID: 10.1007/s10681-013-1025-9)
      Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM (2017) Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27:722–736. (PMID: 10.1101/gr.215087.116282984315411767)
      Li H (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34:3094–3100. (PMID: 10.1093/bioinformatics/bty191297502426137996)
      Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760. (PMID: 10.1093/bioinformatics/btp324194511682705234)
      Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. (PMID: 10.1093/bioinformatics/btp352195059432723002)
      Li X, Zhang S, Bai J, He Y (2016) Tuning growth cycles of Brassica crops via natural antisense transcripts of BrFLC. Plant Biotechnol J 14:905–914. (PMID: 10.1111/pbi.1244326250982)
      Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930. (PMID: 10.1093/bioinformatics/btt65624227677)
      Madrid E, Chandler JW, Coupland G (2021) Gene regulatory networks controlled by FLOWERING LOCUS C that confer variation in seasonal flowering and life history. J Exp Bot 72:4–14. (PMID: 10.1093/jxb/eraa21632369593)
      Motoki K, Kinoshita Y, Nakano R, Hosokawa M, Nakazaki T (2022) Quantitative Analysis of Florigen for the Variability of Floral Induction in Cabbage/Radish Inter-generic Grafting. Plant Cell Physiol 63:1230–1241. (PMID: 10.1093/pcp/pcac09835792499)
      Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295. (PMID: 10.1038/nbt.3122256908504643835)
      Searle I, He Y, Turck F, Vincent C, Fornara F, Kröber S, Amasino RA, Coupland G (2006) The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev 20:898–912. (PMID: 10.1101/gad.373506166009151472290)
      Segawa T, Nishiyama C, Tamiru-Oli M, Sugihara Y, Abe A, Sone H, Itoh N, Asukai M, Uemura A, Oikawa K, Utsushi H, Ikegami-Katayama A, Imamura T, Mori M, Terauchi R, Takagi H (2021) Sat-BSA: an NGS-based method using local de novo assembly of long reads for rapid identification of genomic structural variations associated with agronomic traits. Breed Sci 71:299–312. (PMID: 10.1270/jsbbs.20148347767378573553)
      Song JM, Guan Z, Hu J, Guo C, Yang Z, Wang S, Liu D, Wang B, Lu S, Zhou R, Xie WZ, Cheng Y, Zhang Y, Liu K, Yang QY, Chen LL, Guo L (2020) Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat Plants 6:34–45. (PMID: 10.1038/s41477-019-0577-7319326766965005)
      Takada S, Akter A, Itabashi E, Nishida N, Shea DJ, Miyaji N, Mehraj H, Osabe K, Shimizu M, Takasaki-Yasuda T, Kakizaki T, Okazaki K, Dennis ES, Fujimoto R (2019) The role of FRIGIDA and FLOWERING LOCUS C genes in flowering time of Brassica rapa leafy vegetables. Sci Rep 9:13843. (PMID: 10.1038/s41598-019-50122-2315548476761103)
      Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183. (PMID: 10.1111/tpj.1210523289725)
      Vollrath P, Chawla HS, Schiessl SV, Gabur I, Lee H, Snowdon RJ, Obermeier C (2021) A novel deletion in FLOWERING LOCUS T modulates flowering time in winter oilseed rape. Theor Appl Genet 134:1217–1231. (PMID: 10.1007/s00122-021-03768-4334711617973412)
      Wagner GP, Kin K, Lynch VJ (2012) Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci 131:281–285. (PMID: 10.1007/s12064-012-0162-322872506)
      Wang J, Long Y, Wu B, Liu J, Jiang C, Shi L, Zhao J, King GJ, Meng J (2009) The evolution of Brassica napus FLOWERING LOCUST paralogues in the context of inverted chromosomal duplication blocks. BMC Evol Biol 9:1–13. (PMID: 10.1186/1471-2148-9-271)
      Wei Q, Hu T, Xu X, Tian Z, Bao C, Wang J, Pang H, Hu H, Yan Y, Liu T, Wang W (2022) The New Variation in the Promoter Region of FLOWERING LOCUS T Is Involved in Flowering in Brassica rapa. Genes (basel) 13:1162. (PMID: 10.3390/genes1307116235885945)
      Wu J, Wei K, Cheng F, Li S, Wang Q, Zhao J, Bonnema G, Wang X (2012) A naturally occurring InDel variation in BraA.FLC.b (BrFLC2) associated with flowering time variation in Brassica rapa. BMC Plant Biol 12:151. (PMID: 10.1186/1471-2229-12-151229256113487953)
      Xi X, Wei K, Gao B, Liu J, Liang J, Cheng F, Wang X, Wu J (2018) BrFLC5: a weak regulator of flowering time in Brassica rapa. Theor Appl Genet 131:2107–2116. (PMID: 10.1007/s00122-018-3139-x30008108)
      Yin S, Wan M, Guo C, Wang B, Li H, Li G, Tian Y, Ge X, King GJ, Liu K, Li Z, Wang J (2020) Transposon insertions within alleles of BnaFLC.A10 and BnaFLC.A2 are associated with seasonal crop type in rapeseed. J Exp Bot 71:4729–4741. (PMID: 10.1093/jxb/eraa23732417916)
      Yuan YX, Wu J, Sun RF, Zhang XW, Xu DH, Bonnema G, Wang XW (2009) A naturally occurring splicing site mutation in the Brassica rapa FLC1 gene is associated with variation in flowering time. J Exp Bot 60:1299–1308. (PMID: 10.1093/jxb/erp010191900982657548)
      Zhang X, Meng L, Liu B, Hu Y, Cheng F, Liang J, Mark GMA, Xiaowu W, Wu J (2015) A transposon insertion in FLOWERING LOCUS T is associated with delayed flowering in Brassica rapa. Plant Sci 241:211–220. (PMID: 10.1016/j.plantsci.2015.10.00726706072)
    • الموضوع:
      Date Created: 20230518 Date Completed: 20230522 Latest Revision: 20230522
    • الموضوع:
      20230522
    • الرقم المعرف:
      10.1007/s00122-023-04378-y
    • الرقم المعرف:
      37199824