Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Genetic analysis and QTL mapping for silique density in rapeseed (Brassica napus L.).

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Springer Country of Publication: Germany NLM ID: 0145600 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-2242 (Electronic) Linking ISSN: 00405752 NLM ISO Abbreviation: Theor Appl Genet Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: Berlin, New York, Springer
    • الموضوع:
    • نبذة مختصرة :
      Key Message: Genetic models, QTLs and candidate gene for silique density on main inflorescence of rapeseed were identified. Silique density is one of the critical factors to determine seed yield and plant architecture in rapeseed (Brassica napus L.); however, the genetic control of this trait is largely unknown. In this study, the genetic model for silique density on main inflorescence (SDMI) of rapeseed was estimated according to the phenotypic data of P 1 (an inbreed line with high SDMI), P 2 (an inbreed line with low SDMI), F 1 , F 2 , BC 1 P 1 and BC 1 P 2 populations, revealing that SDMI is probably controlled by multi-minor genes with or without major gene. The QTLs for SDMI and its component characters including silique number on main inflorescence (SNMI) and main inflorescence length (MIL) were consequently mapped from a DH population derived from P 1 and P 2 by using a genetic linkage map constructed by restriction site-associated DNA sequencing (RAD seq) technology. A total of eight, 14 and three QTLs were identified for SDMI, SNMI and MIL under three environments, respectively, with an overlap among SDMI and SNMI in 55.7-75.4 cm on linkage group C06 which corresponding to 11.6-27.3 Mb on chromosome C06. Genomic resequencing was further conducted between a high- and a low-SDMI pool constructed from the DH population, and QTL-seq analysis identified a 0.15 Mb interval (25.98-26.13 Mb) from the C06-QTL region aforementioned. Transcriptome sequencing and qRT-PCR identified one possible candidate gene (BnARGOS) from the 0.15 Mb interval. This study will provide novel insights into the genetic basis of SD in rapeseed.
      (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Audic S, Claverie J (1997) The significance of digital gene expression profiles. Genome Res 7:986–995. (PMID: 9331369)
      Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3:e3376. (PMID: 188528782557064)
      Bin Y, Wei C, C. M, Fu T, Tu J, (2006) Mapping of quantitative trait loci for yield and yield components in Brassica napus L. Acta Agron Sin 32:676–682.
      Cai D, Xiao Y, Yang W, Ye W, Wang B, Younas M, Wu J, Liu K (2014) Association mapping of six yield-related traits in rapeseed (Brassica napus L.). Theor Appl Genet 127:85–96. (PMID: 24121524)
      Cai G, Yang Q, Chen H, Yang Q, Zhang C, Fan C, Zhou Y (2016) Genetic dissection of plant architecture and yield-related traits in Brassica napus. Scientific Reports 6:21625. (PMID: 268803014754947)
      Cao X, Liu B, Zhang Y (2013) SEA: a software package of segregation analysis of quantitative traits in plants. J Nanjing Agric Univ 36:1–6.
      Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH (2011) Stacks: building and genotyping loci de novo from short-read sequences. G3 (Bethesda) 1:171–182. (PMID: 22384329)
      Chandler J, Werr W (2017) DORNRÖSCHEN, DORNRÖSCHEN-LIKE, and PUCHI redundantly control floral meristem identity and organ initiation in Arabidopsis. J Exp Bot 68:3457–3472. (PMID: 28859377)
      Chen W, Zhang Y, Liu X, Chen B, Tu J, Fu T (2007) Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. Theor Appl Genet 115:849–858. (PMID: 17665168)
      Cockerton HM, Vickerstaff RJ, Karlström A, Wilson F, Sobczyk M, He JQ, Sargent DJ, Passey AJ, Mcleary KJ, Pakozdi K (2018) Identification of powdery mildew resistance QTL in strawberry ( Fragaria × ananassa ). Theor Appl Genet 131:1995–2007. (PMID: 299714726096635)
      Dang Z, Zheng L, Wang J, Gao Z, Wu S, Qi Z, Wang Y (2013) Transcriptomic profiling of the salt-stress response in the wild recretohalophyte Reaumuria trigyna. BMC Genomics 14:29. (PMID: 233241063562145)
      Ding G, Zhao Z, Liao Y, Hu Y, Shi L, Long Y, Xu F (2012) Quantitative trait loci for seed yield and yield-related traits, and their responses to reduced phosphorus supply in Brassica napus. Ann Bot 109:747–759. (PMID: 222345583286287)
      Feng G, Qin Z, Yan J, Zhang X, Hu Y (2011) Arabidopsis ORGAN SIZE RELATED1 regulates organ growth and final organ size in orchestration with ARGOS and ARL. New Phytol 191:635–646. (PMID: 21457262)
      Hohenlohe PA, Bassham S, Etter PD, Stiffler N, Johnson EA, Cresko WA, Begun DJ (2010) Population genomics of parallel Adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet 6:e1000862. (PMID: 201955012829049)
      Hu Y, Xie Q, Chua NH (2003) The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size. Plant Cell 15:1951–1961. (PMID: 12953103181323)
      Hu Y, Poh HM, Chua NH (2006) The Arabidopsis ARGOS-LIKE gene regulates cell expansion during organ growth. Plant J 47:1–9. (PMID: 16824178)
      Huang Y, Shi J, Tao Z, Zhang L, Liu Q, Wang X, Yang Q, Liu G, Wang H, Zhang J (2014) Microarray expression analysis of the main inflorescence in Brassica napus. PLoS ONE 9:e102024. (PMID: 250072124090195)
      Institute SAS (2000) SAS/STAT user’s guide, version 8. SAS Institute, Cary.
      Mortazavi A, Williams B, Mccue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628. (PMID: 18516045)
      Özer H, Oral E, D. Ü, (1999) Relationships between yield and yield components on currently improved spring rapeseed cultivars. Turk J Agric for 23:603–608.
      Raboanatahiry N, Chao H, Hou D, Shi P, Li M (2018) QTL alignment for seed yield and yield related traits in Brassica napus. Front Plant Sci 9:1127. (PMID: 301162546083399)
      Radoev M, Becker HC, Ecke W (2008) Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics 179:1547–1558. (PMID: 185626652475754)
      Ren Y, Cui C, Wang Q, Tang Z, Xu X, Lin N, Yin J, Li J, Zhou Q (2018) Genome-wide association analysis of silique density on racemes and its component traits in Brassica napus. Scientia Agricultura Sinica 51:1014–1033.
      Ross J, O’Neill D, Wolbang C, Symons G, Reid J (2001) Auxin-gibberell in interactions and their role in plant growth. J Plant Growth Regul 20:336–353. (PMID: 11986760)
      Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182:851–861. (PMID: 194145642710164)
      Shi J, Zhan J, Yang Y, Ye J, Huang S, Li R, Wang X, Liu G, Wang H (2015) Linkage and regional association analysis reveal two new tightly-linked major-QTLs for pod number and seed number per pod in rapeseed (Brassica napus L.). Sci Rep 5:14481. (PMID: 264344114593047)
      Simard R, L’Ecuyer P (2011) Computing the two-sided Kolmogorov-Smirnov distribution. J Stat Softw 039:1–18.
      Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183. (PMID: 23289725)
      Tang M, Tong C, Liang L, Du C, Zhao J, Xiao L, Tong J, Dai X, Helal M, Dai W, Xiang Y (2020) A recessive high-density pod mutant resource of Brassica napus. Plant Sci 293:110411. (PMID: 32081260)
      Teo ZW, Song S, Wang YQ, Liu J, Yu H (2014) New insights into the regulation of inflorescence architecture. Trends Plant Sci 19:158–165. (PMID: 24315403)
      Tuncturk M, Ciftci V (2007) Relationship between yield and some yield components in rapeseed (Brassica napus ssp. oleifera L.) cultivars by using correlation and path analysis. Pak J Bot 39:81–84.
      Voorrips R (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78. (PMID: 12011185)
      Wang F, Guan C (2010) Molecular mapping and identification of quantitative trait loci for yield components in rapeseed (Brasscia napus L.). Hereditas 32:271–277. (PMID: 20233705)
      Wang X, Chen L, Wang A, Wang H, Tian J, Zhao X, Chao H, Zhao Y, Zhao W, Xiang J (2016) Quantitative trait loci analysis and genome-wide comparison for silique related traits in Brassica napus. BMC Plant Biol 16:71. (PMID: 270008724802616)
      Wang S, Basten C, Zeng Z (2011) Windows QTL Cartographer Version 2.5. Department of Statistics, North Carolina State University, Raleigh, NC.
      Wei C, Zhang Y, Liu X, Chen B, Tu J, Fu T (2007) Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. Theor Appl Genet 115(6):849–858.
      Yang P, Shu C, Chen L, Xu J, Wu J, Liu K (2012) Identification of a major QTL for silique length and seed weight in oilseed rape (Brassica napus L.). Theor Appl Genet 125:285–296. (PMID: 22406980)
      Ye J, Yang Y, Chen B, Shi J, Luo M, Zhan J, Wang X, Liu G, Wang H (2017) An integrated analysis of QTL mapping and RNA sequencing provides further insights and promising candidates for pod number variation in rapeseed (Brassica napus L.). BMC Genomics 18:71. (PMID: 280770715225578)
      Yi Y, Shen Y, Li S, Ge X, Li Z (2017) High density linkage map construction and QTL detection for three silique-related traits in Orychophragmus violaceus derived Brassica napus population. Front Plant Sci 8:1512.
      Yu F, Shi X, Wang D (2014) Interpreting the genetic basis of silique traits in Brassica napus using a joint QTL network. Plant Breeding 133:52–60.
      Yuan D, Zhang Y, Wang Z, Qu C, Zhu D, Wan H, Liang Y (2022) BnKAT2 positively regulates the main inflorescence length and silique number in Brassica napus by regulating the auxin and cytokinin signaling pathways. Plants (basel) 11:1679. (PMID: 35807631)
      Zhang Y, Gai J (2000a) Identification of two major genes plus polygenes mixed inheritance model of quantitative traits in B1 and B2, and F2. J Biomath 15:358–366.
      Zhang Y, Gai J (2000b) The IECM algorithm for estimation of component distribution parameters in segregating analysis of quantitative traits. Acta Agron Sin 26:699–706.
      Zhang L, Yang G, Liu P, Hong D, Li S, He Q (2011) Genetic and correlation analysis of silique-traits in Brassica napus L. by quantitative trait locus mapping. Theor Appl Genet 122:21–31. (PMID: 20686746)
      Zhang L, Li S, Chen L, Yang G (2012) Identification and mapping of a major dominant quantitative trait locus controlling seeds per silique as a single Mendelian factor in Brassica napus L. Theor Appl Genet 125:695–705. (PMID: 22487878)
      Zhao W, Wang X, Wang H, Tian J, Li B, Chen L, Chao H, Long Y, Xiang J, Gan J (2016) Genome-wide identification of QTL for seed yield and yield-related traits and construction of a high-density consensus map for QTL comparison in Brassica napus. Front Plant Sci 7:17. (PMID: 268587374729939)
      Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, Yu Y, Shu L, Zhao Y, Ma Y (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33:408–414. (PMID: 25643055)
    • Grant Information:
      2022ZD0400802 National Key R&D Program of China
    • الموضوع:
      Date Created: 20230516 Date Completed: 20230518 Latest Revision: 20230607
    • الموضوع:
      20231215
    • الرقم المعرف:
      10.1007/s00122-023-04375-1
    • الرقم المعرف:
      37191718