Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

SAS and R code for probabilistic quantitative bias analysis for misclassified binary variables and binary unmeasured confounders.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Fox MP;Fox MP;Fox MP; MacLehose RF; MacLehose RF; Lash TL; Lash TL
  • المصدر:
    International journal of epidemiology [Int J Epidemiol] 2023 Oct 05; Vol. 52 (5), pp. 1624-1633.
  • نوع النشر :
    Journal Article; Research Support, N.I.H., Extramural
  • اللغة:
    English
  • معلومة اضافية
    • المصدر:
      Publisher: Oxford University Press Country of Publication: England NLM ID: 7802871 Publication Model: Print Cited Medium: Internet ISSN: 1464-3685 (Electronic) Linking ISSN: 03005771 NLM ISO Abbreviation: Int J Epidemiol Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: [London] Oxford University Press.
    • الموضوع:
    • نبذة مختصرة :
      Systematic error from selection bias, uncontrolled confounding, and misclassification is ubiquitous in epidemiologic research but is rarely quantified using quantitative bias analysis (QBA). This gap may in part be due to the lack of readily modifiable software to implement these methods. Our objective is to provide computing code that can be tailored to an analyst's dataset. We briefly describe the methods for implementing QBA for misclassification and uncontrolled confounding and present the reader with example code for how such bias analyses, using both summary-level data and individual record-level data, can be implemented in both SAS and R. Our examples show how adjustment for uncontrolled confounding and misclassification can be implemented. Resulting bias-adjusted point estimates can then be compared to conventional results to see the impact of this bias in terms of its direction and magnitude. Further, we show how 95% simulation intervals can be generated that can be compared to conventional 95% confidence intervals to see the impact of the bias on uncertainty. Having easy to implement code that users can apply to their own datasets will hopefully help spur more frequent use of these methods and prevent poor inferences drawn from studies that do not quantify the impact of systematic error on their results.
      (© The Author(s) 2023; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.)
    • References:
      Epidemiology. 2012 Jan;23(1):151-8. (PMID: 22157311)
      Am J Public Health. 2016 Jul;106(7):1227-30. (PMID: 27196652)
      Int J Epidemiol. 2005 Dec;34(6):1370-6. (PMID: 16172102)
      Clin Epidemiol. 2009 Aug 09;1:109-17. (PMID: 20865092)
      Epidemiology. 2018 Mar;29(2):183-190. (PMID: 29166302)
      Int J Epidemiol. 1996 Dec;25(6):1107-16. (PMID: 9027513)
      Epidemiology. 2014 Jul;25(4):576-82. (PMID: 24815306)
      Int J Epidemiol. 2017 Jun 1;46(3):1063-1072. (PMID: 28338966)
      Epidemiology. 2007 Jan;18(1):67-72. (PMID: 17149141)
      Int J Epidemiol. 2009 Oct;38(5):1175-91. (PMID: 19773415)
      Am J Epidemiol. 2017 Sep 15;186(6):639-645. (PMID: 28938712)
      Am J Epidemiol. 2017 May 15;185(10):865-868. (PMID: 28430833)
      J Epidemiol Community Health. 2009 Feb;63(2):91. (PMID: 19141660)
      Ann Epidemiol. 2013 Mar;23(3):129-35. (PMID: 23332712)
      Int J Epidemiol. 2014 Dec;43(6):1969-85. (PMID: 25080530)
    • Grant Information:
      R01 LM013049 United States LM NLM NIH HHS
    • Contributed Indexing:
      Keywords: Bias analysis; bias; epidemiologic methods; systematic error
    • الموضوع:
      Date Created: 20230504 Date Completed: 20231009 Latest Revision: 20240505
    • الموضوع:
      20250114
    • الرقم المعرف:
      PMC10555728
    • الرقم المعرف:
      10.1093/ije/dyad053
    • الرقم المعرف:
      37141446