Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Discovery of common loci and candidate genes for controlling salt-alkali tolerance and yield-related traits in Brassica napus L.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Springer Country of Publication: Germany NLM ID: 9880970 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-203X (Electronic) Linking ISSN: 07217714 NLM ISO Abbreviation: Plant Cell Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: Berlin ; New York : Springer, 1981-
    • الموضوع:
    • نبذة مختصرة :
      Key Message: Common loci and candidate genes for controlling salt-alkali tolerance and yield-related traits were identified in Brassica napus combining QTL mapping with transcriptome under salt and alkaline stresses. The yield of rapeseed (Brassica napus L.) is determined by multiple yield-related traits, which are susceptible to environmental factors. Many yield-related quantitative trait loci (QTLs) have been reported in Brassica napus; however, no studies have been conducted to investigate both salt-alkali tolerance and yield-related traits simultaneously. Here, specific-locus amplified fragment sequencing (SLAF-seq) technologies were utilized to map the QTLs for salt-alkali tolerance and yield-related traits. A total of 65 QTLs were identified, including 30 QTLs for salt-alkali tolerance traits and 35 QTLs for yield-related traits, accounting for 7.61-27.84% of the total phenotypic variations. Among these QTLs, 18 unique QTLs controlling two to four traits were identified by meta-analysis. Six novel and unique QTLs were detected for salt-alkali tolerance traits. By comparing these unique QTLs for salt-alkali tolerance traits with those previously reported QTLs for yield-related traits, seven co-localized chromosomal regions were identified on A09 and A10. Combining QTL mapping with transcriptome of two parents under salt and alkaline stresses, thirteen genes were identified as the candidates controlling both salt-alkali tolerance and yield. These findings provide useful information for future breeding of high-yield cultivars resistant to alkaline and salt stresses.
      (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Achard P, Baghour M, Chapple A et al (2007) The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proc Natl Acad Sci U S A 104:6484–6489. https://doi.org/10.1073/pnas.0610717104. (PMID: 10.1073/pnas.0610717104173893661851083)
      Arcade A, Labourdette A, Falque M et al (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326. https://doi.org/10.1093/bioinformatics/bth230. (PMID: 10.1093/bioinformatics/bth23015059820)
      Baird NA, Etter PD, Atwood TS et al (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3:1–7. https://doi.org/10.1371/journal.pone.0003376. (PMID: 10.1371/journal.pone.0003376)
      Basten CJ, Weir BS, Zeng Z (1997) QTL Cartographer: a reference manual and tutorial for qtl mapping. North Carolina State University, Raleigh, NC.
      Basunanda P, Radoev M, Ecke W et al (2010) Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.). Theor Appl Genet 120:271–281. https://doi.org/10.1007/s00122-009-1133-z. (PMID: 10.1007/s00122-009-1133-z19707740)
      Bowers JE, Pearl SA, Burke JM (2016) Genetic mapping of millions of SNPs in safflower (Carthamus tinctorius L.) via whole-genome resequencing. G3 genes. Genomes, Genet 6:2203–2211. https://doi.org/10.1534/g3.115.026690. (PMID: 10.1534/g3.115.026690)
      Burns MJ, Barnes SR, Bowman JG et al (2003) QTL analysis of an intervarietal set of substitution lines in Brassica napus: (I) seed oil content and fatty acid composition. Heredity (edinb) 90:39–48. https://doi.org/10.1038/sj.hdy.6800176. (PMID: 10.1038/sj.hdy.680017612522424)
      Cai CC, Tu JX, Fu TD, Chen BY (2008) The genetic basis of flowering time and photoperiod sensitivity in rapeseed Brassica napus L. Russ J Genet 44:326–333. https://doi.org/10.1134/s1022795408030137. (PMID: 10.1134/s1022795408030137)
      Cai D, Xiao Y, Yang W et al (2014) Association mapping of six yield-related traits in rapeseed. Theor Appl Genet 127:85–96. https://doi.org/10.1007/s00122-013-2203-9. (PMID: 10.1007/s00122-013-2203-924121524)
      Chen C, Chen H, Zhang Y et al (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202. https://doi.org/10.1016/j.molp.2020.06.009. (PMID: 10.1016/j.molp.2020.06.00932585190)
      Do TD, Vuong TD, Dunn D et al (2018) Mapping and confirmation of loci for salt tolerance in a novel soybean germplasm, Fiskeby III. Theor Appl Genet 131:513–524. https://doi.org/10.1007/s00122-017-3015-0. (PMID: 10.1007/s00122-017-3015-029151146)
      Dong X, Hong Z, Sivaramakrishnan M et al (2005) Callose synthase (CalS5) is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis. Plant J 42:315–328. https://doi.org/10.1111/j.1365-313X.2005.02379.x. (PMID: 10.1111/j.1365-313X.2005.02379.x15842618)
      Doyle JJ (1990) Isolation of plant DNA from fresh Tissue. Focus (madison) 12:13–15.
      El-Esawi MA, Alayafi AA (2019) Overexpression of StDREB2 transcription factor enhances drought stress tolerance in cotton (Gossypium barbadense L.). Genes (basel). https://doi.org/10.3390/genes10020142. (PMID: 10.3390/genes1002014230791662)
      Ferreira ME, Williams PH, Osborn TC (1994) RFLP mapping of brassica napus using doubled haploid lines. Theor Appl Genet 89:615–621. https://doi.org/10.1007/BF00222456. (PMID: 10.1007/BF0022245624177938)
      Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319. https://doi.org/10.1093/jxb/erh003. (PMID: 10.1093/jxb/erh00314718494)
      Foisset N, Delourme R, Barret P et al (1996) Molecular-mapping analysis in brassica napus using isozyme, RAPD and RFLF markers on a doubled-haploid progeny. Theor Appl Genet 93:1017–1025. https://doi.org/10.1007/BF00230119. (PMID: 10.1007/BF0023011924162475)
      Ganal MW, Altmann T, Röder MS (2009) SNP identification in crop plants. Curr Opin Plant Biol 12:211–217. https://doi.org/10.1016/j.pbi.2008.12.009. (PMID: 10.1016/j.pbi.2008.12.00919186095)
      Geng X, Jiang C, Yang J et al (2016) Rapid identification of candidate genes for seed weight using the SLAF-seq method in Brassica napus. PLoS ONE 11:1–14. https://doi.org/10.1371/journal.pone.0147580. (PMID: 10.1371/journal.pone.0147580)
      Goffinet B, Gerber S (2000) Quantitative trait loci: a meta-analysis. Genetics 155:463–473. https://doi.org/10.1093/genetics/155.1.463. (PMID: 10.1093/genetics/155.1.463107904171461053)
      He J, Ke L, Hong D et al (2008) Fine mapping of a recessive genic male sterility gene (Bnms3) in rapeseed (Brassica napus) with AFLP- and Arabidopsis-derived PCR markers. Theor Appl Genet 117:11–18. https://doi.org/10.1007/s00122-008-0747-x. (PMID: 10.1007/s00122-008-0747-x18369585)
      He Y, Wu D, You J, Qian W (2017) Genome-wide association analysis of salt tolerance related traits in Brassica napus and candidate gene prediction. Sci Agric Sin 50:1189–1201. https://doi.org/10.3864/j.issn.0578-1752.2017.07.002. (PMID: 10.3864/j.issn.0578-1752.2017.07.002)
      Hichri I, Muhovski Y, Clippe A et al (2016) SlDREB2, a tomato dehydration-responsive element-binding 2 transcription factor, mediates salt stress tolerance in tomato and arabidopsis. Plant Cell Environ 39:62–79. https://doi.org/10.1111/pce.12591. (PMID: 10.1111/pce.1259126082265)
      Hoedemaekers K, Derksen J, Hoogstrate SW et al (2015) BURSTING POLLEN is required to organize the pollen germination plaque and pollen tube tip in arabidopsis thaliana. New Phytol 206:255–267. https://doi.org/10.1111/nph.13200. (PMID: 10.1111/nph.1320025442716)
      Hou LT, Wang TY, Jian HJ et al (2017) QTL mapping for seedling dry weight and fresh weight under salt stress and candidate genes analysis in Brassica napus L. Acta Agron Sin 43:179–189. https://doi.org/10.3724/SP.J.1006.2017.00179. (PMID: 10.3724/SP.J.1006.2017.00179)
      Hu XH, Zhang SZ, Miao HR et al (2018) High-density genetic map construction and identification of QTLs controlling oleic and linoleic acid in peanut using SLAF-seq and SSRs. Sci Rep 8:1–10. https://doi.org/10.1038/s41598-018-23873-7. (PMID: 10.1038/s41598-018-23873-7)
      Hu J, Chen B, Zhao J et al (2022) Genomic selection and genetic architecture of agronomic traits during modern rapeseed breeding. Nat Genet 54:694–704. https://doi.org/10.1038/s41588-022-01055-6. (PMID: 10.1038/s41588-022-01055-635484301)
      Huang X, Zhao Y, Wei X et al (2012) Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet 44:32–39. https://doi.org/10.1038/ng.1018. (PMID: 10.1038/ng.1018)
      Jian HJ, Xiao Y, Li JN et al (2014) QTL mapping for germination percentage under salinity and drought stresses in Brassica napus L. using a SNP genetic map. Acta Agron Sin 40:629–635. https://doi.org/10.3724/SP.J.1006.2014.00629. (PMID: 10.3724/SP.J.1006.2014.00629)
      Jian H, Zhang A, Ma J et al (2019) Joint QTL mapping and transcriptome sequencing analysis reveal candidate flowering time genes in Brassica napus L. BMC Genomics 20:1–14. https://doi.org/10.1186/s12864-018-5356-8. (PMID: 10.1186/s12864-018-5356-8)
      Jiaqin S, Ruiyuan L, Dan Q et al (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182:851–861. https://doi.org/10.1534/genetics.109.101642. (PMID: 10.1534/genetics.109.101642)
      Kato H, Motomura T, Komeda Y et al (2010) Overexpression of the NAC transcription factor family gene ANAC036 results in a dwarf phenotype in arabidopsis thaliana. J Plant Physiol 167:571–577. https://doi.org/10.1016/j.jplph.2009.11.004. (PMID: 10.1016/j.jplph.2009.11.00419962211)
      Kosambi D (1943) The estimation of map distances from recombination values. Ann Eugen 12:172–175. (PMID: 10.1111/j.1469-1809.1943.tb02321.x)
      Krishnaswamy S, Verma S, Rahman MH, Kav NNV (2011) Functional characterization of four APETALA2-family genes (RAP2.6, RAP2.6L, DREB19 and DREB26) in arabidopsis. Plant Mol Biol 75:107–127. https://doi.org/10.1007/s11103-010-9711-7. (PMID: 10.1007/s11103-010-9711-721069430)
      Lang LN, Xu AX, Ding J et al (2017) Quantitative trait locus mapping of salt tolerance and identification of salt-tolerant genes in Brassica napus L. Front Plant Sci 8:1–13. https://doi.org/10.3389/fpls.2017.01000. (PMID: 10.3389/fpls.2017.01000)
      Li Y, Shen J, Wang T et al (2007) QTL analysis of yield-related traits and their association with functional markers in Brassica napus L. Aust J Agric Res 58:759–766. https://doi.org/10.1071/AR06350. (PMID: 10.1071/AR06350)
      Li G, Zhang J, Li J et al (2012) Imitation Switch chromatin remodeling factors and their interacting RINGLET proteins act together in controlling the plant vegetative phase in arabidopsis. Plant J 72:261–270. https://doi.org/10.1111/j.1365-313X.2012.05074.x. (PMID: 10.1111/j.1365-313X.2012.05074.x22694359)
      Li S, Chen L, Zhang L et al (2015) BnaC9.SMG7b functions as a positive regulator of the number of seeds per silique in Brassica napus by regulating the formation of functional female gametophytes. Plant Physiol 169:2744–2760. https://doi.org/10.1104/pp.15.01040. (PMID: 10.1104/pp.15.01040264941214677898)
      Li B, Fan S, Yu F et al (2017) High-resolution mapping of QTL for fatty acid composition in soybean using specifc-locus amplifed fragment sequencing. Theor Appl Genet 130:1467–1479. https://doi.org/10.1007/s00122-017-2902-8. (PMID: 10.1007/s00122-017-2902-8283897695487593)
      Li B, Zhao W, Li D et al (2018a) Genetic dissection of the mechanism of flowering time based on an environmentally stable and specific QTL in Brassica napus. Plant Sci 277:296–310. https://doi.org/10.1016/j.plantsci.2018.10.005. (PMID: 10.1016/j.plantsci.2018.10.00530466595)
      Li R, Jeong K, Davis JT et al (2018b) Integrated QTL and eQTL mapping provides insights and candidate genes for fatty acid composition, flowering time, and growth traits in a F2 population of a novel synthetic allopolyploid Brassica napus. Front Plant Sci 871:1–20. https://doi.org/10.3389/fpls.2018.01632. (PMID: 10.3389/fpls.2018.01632)
      Li B, Gao J, Chen J et al (2020) Identification and fine mapping of a major locus controlling branching in Brassica napus. Theor Appl Genet 133:771–783. https://doi.org/10.1007/s00122-019-03506-x. (PMID: 10.1007/s00122-019-03506-x31844964)
      Liu D, Ma C, Hong W et al (2014) Construction and analysis of high-density linkage map using high-throughput sequencing data. PLoS ONE 9:e98855. https://doi.org/10.1371/journal.pone.0098855. (PMID: 10.1371/journal.pone.0098855249059854048240)
      Long Y, Shi J, Qiu D et al (2007) Flowering time quantitative trait loci analysis of oilseed brassica in multiple environments and genomewide alignment with arabidopsis. Genetics 177:2433–2444. https://doi.org/10.1534/genetics.107.080705. (PMID: 10.1534/genetics.107.080705180734392219480)
      Luo Z, Wang M, Long Y et al (2017) Incorporating pleiotropic quantitative trait loci in dissection of complex traits: seed yield in rapeseed as an example. Theor Appl Genet 130:1569–1585. https://doi.org/10.1007/s00122-017-2911-7. (PMID: 10.1007/s00122-017-2911-7284557675719798)
      Ma H, Wang R, Wang X, Ma H (2009) Identification and evaluation of salt tolerance of jute germplasm during germination and seedling periods. J Plant Genet Resour 10:236–243. https://doi.org/10.13430/j.cnki.jpgr.2009.02.013. (PMID: 10.13430/j.cnki.jpgr.2009.02.013)
      Machado RMA, Serralheiro RP (2017) Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 3:30. https://doi.org/10.3390/horticulturae3020030. (PMID: 10.3390/horticulturae3020030)
      Mei DS, Wang HZ, Hu Q et al (2009) QTL analysis on plant height and flowering time in Brassica napus. Plant Breed 128:458–465. https://doi.org/10.1111/j.1439-0523.2008.01528.x. (PMID: 10.1111/j.1439-0523.2008.01528.x)
      Paterson AH, Lander ES, Hewitt JD et al (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726. (PMID: 10.1038/335721a02902517)
      Piquemal J, Cinquin E, Couton F et al (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 111:1514–1523. https://doi.org/10.1007/s00122-005-0080-6. (PMID: 10.1007/s00122-005-0080-616187118)
      Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e32253. https://doi.org/10.1371/journal.pone.0032253. (PMID: 10.1371/journal.pone.0032253223896903289635)
      Quijada PA, Udall JA, Lambert B et al (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. Identification of genomic regions from winter germplasm. Theor. Appl. Genet. 113:549–561. https://doi.org/10.1007/s00122-006-0323-1. (PMID: 10.1007/s00122-006-0323-116767447)
      Raman H, Raman R, Kilian A et al (2014) Genome-wide delineation of natural variation for pod shatter resistance in Brassica napus. PLoS ONE 9:e101673. https://doi.org/10.1371/journal.pone.0101673. (PMID: 10.1371/journal.pone.0101673250068044090071)
      Seo PJ, Park JM, Kang SK et al (2011) An arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity. Planta 233:189–200. https://doi.org/10.1007/s00425-010-1293-8. (PMID: 10.1007/s00425-010-1293-820963606)
      Shen Y, Xiang Y, Xu E et al (2018) Major co-localized QTL for plant height, branch initiation height, stem diameter, and flowering time in an alien introgression derived Brassica napus DH population. Front Plant Sci 9:1–13. https://doi.org/10.3389/fpls.2018.00390. (PMID: 10.3389/fpls.2018.00390)
      Shi JQ, Li RY, Qiu D et al (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182:851–61. https://doi.org/10.1534/genetics.109.101642. (PMID: 10.1534/genetics.109.101642194145642710164)
      Shi Y, Zhang X, Xu ZY et al (2011) Influence of EARLI1-like genes on flowering time and lignin synthesis of Arabidopsis thaliana. Plant Biol 13:731–739. https://doi.org/10.1111/j.1438-8677.2010.00428.x. (PMID: 10.1111/j.1438-8677.2010.00428.x21815977)
      Song J, Li J, Sun J et al (2018) Genome-wide association mapping for cold tolerance in a core collection of rice (Oryza sativa L.) landraces by using high-density single nucleotide polymorphism markers from specific-locus amplified fragment sequencing. Front Plant Sci 9:1–15. https://doi.org/10.3389/fpls.2018.00875. (PMID: 10.3389/fpls.2018.00875)
      Song JM, Guan Z, Hu J et al (2020) Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat. Plants 6:34–45. https://doi.org/10.1038/s41477-019-0577-7. (PMID: 10.1038/s41477-019-0577-7319326766965005)
      Sukiran NL, Ma JC, Ma H, Su Z (2019) ANAC019 is required for recovery of reproductive development under drought stress in arabidopsis. Plant Mol Biol 99:161–174. https://doi.org/10.1007/s11103-018-0810-1. (PMID: 10.1007/s11103-018-0810-130604322)
      Sun X, Liu D, Zhang X et al (2013) SLAF-seq: an efficient method of large-scale De Novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE 8:e58700. https://doi.org/10.1371/journal.pone.0058700. (PMID: 10.1371/journal.pone.0058700235270083602454)
      Tocquin P, Corbesier L, Havelange A et al (2003) A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of arabidopsis thaliana. BMC Plant Biol 3:2–11. https://doi.org/10.1186/1471-2229-3-2. (PMID: 10.1186/1471-2229-3-212556248150571)
      Udall JA, Quijada PA, Lambert B, Osborn TC (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 2. Identification of alleles from unadapted germplasm. Theor Appl Genet 113:597–609. https://doi.org/10.1007/s00122-006-0324-0. (PMID: 10.1007/s00122-006-0324-016767446)
      Van Ooijen JW (2011) Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet Res (camb) 93:343–349. https://doi.org/10.1017/S0016672311000279. (PMID: 10.1017/S001667231100027921878144)
      Van Os H, Stam P, Visser RGF, Van Eck HJ (2005) SMOOTH: a statistical method for successful removal of genotyping errors from high-density genetic linkage data. Theor Appl Genet 112:187–194. https://doi.org/10.1007/s00122-005-0124-y. (PMID: 10.1007/s00122-005-0124-y16258753)
      Vandesompele J, De Preter K, Pattyn F et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:0034.1-0034.11. https://doi.org/10.1186/gb-2002-3-7-research0034. (PMID: 10.1186/gb-2002-3-7-research0034)
      Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78. https://doi.org/10.1093/jhered/93.1.77. (PMID: 10.1093/jhered/93.1.7712011185)
      Wan H, Chen L, Guo J et al (2017) Genome-wide association study reveals the genetic architecture underlying salt tolerance-related traits in rapeseed (Brassica napus L.). Front Plant Sci 8:1–15. https://doi.org/10.3389/fpls.2017.00593. (PMID: 10.3389/fpls.2017.00593)
      Wang HZ (2007) Analysis and strategy for current domestic edible oil supply. Chinese J Oil Crop Sci 29:347–349.
      Wang Y, Liu C, Li K et al (2007) Arabidopsis EIN2 modulates stress response through abscisic acid response pathway. Plant Mol Biol 64:633–644. https://doi.org/10.1007/s11103-007-9182-7. (PMID: 10.1007/s11103-007-9182-717533512)
      Wang Y, Zhang WZ, Song LF et al (2008) Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in arabidopsis. Plant Physiol 148:1201–1211. https://doi.org/10.1104/pp.108.126375. (PMID: 10.1104/pp.108.126375187759702577266)
      Wang L, Feng Z, Wang X et al (2009) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138. https://doi.org/10.1093/bioinformatics/btp612. (PMID: 10.1093/bioinformatics/btp61219855105)
      Wang N, Chen B, Xu K et al (2016a) Association mapping of flowering time QTLs and insight into their contributions to rapeseed growth habits. Front Plant Sci 7:1–11. https://doi.org/10.3389/fpls.2016.00338. (PMID: 10.3389/fpls.2016.00338268587314726751)
      Wang X, Chen L, Wang A et al (2016b) Quantitative trait loci analysis and genome-wide comparison for silique related traits in Brassica napus. BMC Plant Biol 16:1–15. https://doi.org/10.1186/s12870-016-0759-7. (PMID: 10.1186/s12870-016-0759-7)
      Wassan GM, Khanzada H, Zhou Q et al (2021) Identification of genetic variation for salt tolerance in Brassica napus using genome-wide association mapping. Mol Genet Genomics 296:391–408. https://doi.org/10.1007/s00438-020-01749-8. (PMID: 10.1007/s00438-020-01749-833464396)
      Wei D, Mei J, Fu Y et al (2014) Quantitative trait loci analyses for resistance to sclerotinia sclerotiorum and flowering time in Brassica napus. Mol Breed 34:1797–1804. https://doi.org/10.1007/s11032-014-0139-7. (PMID: 10.1007/s11032-014-0139-7)
      Wei D, Cui Y, He Y et al (2017) A genome-wide survey with different rapeseed ecotypes uncovers footprints of domestication and breeding. J Exp Bot 68:4791–4801. https://doi.org/10.1093/jxb/erx311. (PMID: 10.1093/jxb/erx311289923095853444)
      Wei Y (2016) Genome-wide association mapping of salt tolerance trait in the germination period in brassica napus L. Huazhong agricultural university.
      Wu D, Liang Z, Yan T et al (2019) Whole-genome resequencing of a worldwide collection of rapeseed accessions reveals the genetic basis of ecotype divergence. Mol Plant 12:30–43. https://doi.org/10.1016/j.molp.2018.11.007. (PMID: 10.1016/j.molp.2018.11.00730472326)
      Xu J, Qian X, Wang X et al (2010) Construction of an integrated genetic linkage map for the A genome of brassica napus using SSR markers derived from sequenced BACs in B. rapa. BMC Genomics 11:594. https://doi.org/10.1186/1471-2164-11-594. (PMID: 10.1186/1471-2164-11-594209697603091739)
      Xu L, Hu K, Zhang Z et al (2015) Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). DNA Res 23:43–52. https://doi.org/10.1093/dnares/dsv035. (PMID: 10.1093/dnares/dsv035266594714755526)
      Xu LP, Hu KN, Zhang ZQ et al (2016) Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). DNA Res 23:43–52. https://doi.org/10.1093/dnares/dsv035. (PMID: 10.1093/dnares/dsv03526659471)
      Xu Y, Zhang B, Ma N et al (2021) Quantitative trait locus mapping and identification of candidate genes controlling flowering time in Brassica napus L. Front Plant Sci. https://doi.org/10.3389/fpls.2020.626205. (PMID: 10.3389/fpls.2020.626205352111278750863)
      Xu Y, Tao SX, Zhu YL et al (2022) Identification of alkaline salt tolerance genes in Brassica napus L. by transcriptome analysis. Genes 13:1493. https://doi.org/10.3390/genes13081493. (PMID: 10.3390/genes13081493360114049408751)
      Yan ML, Ge WW, Zhang X et al (2022) Situation analysis and development strategy study of China’s oilseed industry. China Oils Fats. https://doi.org/10.19902/j.cnki.zgyz.1003-7969.220115. (PMID: 10.19902/j.cnki.zgyz.1003-7969.220115)
      Yang S, Chen S, Zhang K et al (2018) A high-density genetic map of an allohexaploid brassica doubled haploid population reveals quantitative trait loci for pollen viability and fertility. Front Plant Sci 9:1–18. https://doi.org/10.3389/fpls.2018.01161. (PMID: 10.3389/fpls.2018.01161)
      Ye J, Yang Y, Chen B et al (2017) An integrated analysis of QTL mapping and RNA sequencing provides further insights and promising candidates for pod number variation in rapeseed (Brassica napus L.). BMC Genomics 18:1–14. https://doi.org/10.1186/s12864-016-3402-y. (PMID: 10.1186/s12864-016-3402-y)
      Yeo A (1998) Molecular biology of salt tolerance in the context of whole-plant physiology. J Exp Bot 49:915–929. https://doi.org/10.1093/jxb/49.323.915. (PMID: 10.1093/jxb/49.323.915)
      Yong H-Y, Wang C, Bancroft I et al (2015) Identification of a gene controlling variation in the salt tolerance of rapeseed (Brassica napus L.). Planta 242:313–326. https://doi.org/10.1007/s00425-015-2310-8. (PMID: 10.1007/s00425-015-2310-825921693)
      Zhang L, Li S, Chen L, Yang G (2012) Identification and mapping of a major dominant quantitative trait locus controlling seeds per silique as a single mendelian factor in Brassica napus L. Theor Appl Genet 125:695–705. https://doi.org/10.1007/s00122-012-1861-3. (PMID: 10.1007/s00122-012-1861-322487878)
      Zhang D, Li H, Wang J et al (2016) High-density genetic mapping identifies new major loci for tolerance to low phosphorus stress in soybean. Front Plant Sci 7:1–11. https://doi.org/10.3389/fpls.2016.00372. (PMID: 10.3389/fpls.2016.00372)
      Zhang R, Deng W, Yang L et al (2017) Genome-wide association study of root length and hypocotyl length at germination stage under saline conditions in Brassica napus. Sci Agric Sin 50:15–27. https://doi.org/10.3864/j.issn.0578-1752.2017.01.002. (PMID: 10.3864/j.issn.0578-1752.2017.01.002)
      Zhang G, Zhou J, Peng Y et al (2022a) Genome-wide association studies of salt tolerance at seed germination and seedling stages in Brassica napus. Front Plant Sci 12:1–13. https://doi.org/10.3389/fpls.2021.772708. (PMID: 10.3389/fpls.2021.772708)
      Zhang G, Peng Y, Zhou J et al (2022b) Genome-wide association studies of salt-alkali tolerance at seedling and mature stages in Brassica napus. Front Plant Sci 13:857149. https://doi.org/10.3389/fpls.2022.857149. (PMID: 10.3389/fpls.2022.857149355741289094488)
      Zhao W, Wang X, Wang H et al (2016) Genome-wide identification of QTL for seed yield and yield-related traits and construction of a high-density consensus map for QTL comparison in Brassica napus. Front Plant Sci 7:1–14. https://doi.org/10.3389/fpls.2016.00017. (PMID: 10.3389/fpls.2016.00017268587314726751)
      Zhou F, Liu Y, Liang C et al (2018) Construction of a high-density genetic linkage map and QTL mapping of oleic acid content and three agronomic traits in sunflower (Helianthus annuu L.) using specific-locus amplified fragment sequencing (SLAF-seq). Breed Sci 68:596–605. https://doi.org/10.1270/jsbbs.18051. (PMID: 10.1270/jsbbs.18051306971216345229)
      Zhu WY, Huang L, Chen L et al (2016) A high-density genetic linkage map for cucumber (Cucumis sativus L.): based on specific length amplified fragment (SLAF) sequencing and QTL analysis of fruit traits in cucumber. Front Plant Sci 7:1–11. https://doi.org/10.3389/fpls.2016.00437. (PMID: 10.3389/fpls.2016.00437)
    • Grant Information:
      Ylzy-yc2021-01 the Key research and development projects of Yangling Seed-industry Innovation Center
    • Contributed Indexing:
      Keywords: Brassica napus L.; Candidate gene; QTL; SLAF-seq; Salt-alkali; Yield-related traits
    • الرقم المعرف:
      451W47IQ8X (Sodium Chloride)
    • الموضوع:
      Date Created: 20230419 Date Completed: 20230512 Latest Revision: 20230512
    • الموضوع:
      20231215
    • الرقم المعرف:
      10.1007/s00299-023-03011-y
    • الرقم المعرف:
      37076701