Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Nonparametric failure time: Time-to-event machine learning with heteroskedastic Bayesian additive regression trees and low information omnibus Dirichlet process mixtures.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Biometric Society Country of Publication: England NLM ID: 0370625 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1541-0420 (Electronic) Linking ISSN: 0006341X NLM ISO Abbreviation: Biometrics Subsets: MEDLINE
    • بيانات النشر:
      Publication: Alexandria Va : Biometric Society
      Original Publication: Washington.
    • الموضوع:
    • نبذة مختصرة :
      Many popular survival models rely on restrictive parametric, or semiparametric, assumptions that could provide erroneous predictions when the effects of covariates are complex. Modern advances in computational hardware have led to an increasing interest in flexible Bayesian nonparametric methods for time-to-event data such as Bayesian additive regression trees (BART). We propose a novel approach that we call nonparametric failure time (NFT) BART in order to increase the flexibility beyond accelerated failure time (AFT) and proportional hazard models. NFT BART has three key features: (1) a BART prior for the mean function of the event time logarithm; (2) a heteroskedastic BART prior to deduce a covariate-dependent variance function; and (3) a flexible nonparametric error distribution using Dirichlet process mixtures (DPM). Our proposed approach widens the scope of hazard shapes including nonproportional hazards, can be scaled up to large sample sizes, naturally provides estimates of uncertainty via the posterior and can be seamlessly employed for variable selection. We provide convenient, user-friendly, computer software that is freely available as a reference implementation. Simulations demonstrate that NFT BART maintains excellent performance for survival prediction especially when AFT assumptions are violated by heteroskedasticity. We illustrate the proposed approach on a study examining predictors for mortality risk in patients undergoing hematopoietic stem cell transplant (HSCT) for blood-borne cancer, where heteroskedasticity and nonproportional hazards are likely present.
      (© 2023 The International Biometric Society.)
    • References:
      Biostatistics. 2020 Jan 1;21(1):69-85. (PMID: 30059992)
      Bioinformatics. 2011 Feb 1;27(3):359-67. (PMID: 21148161)
      JAMA. 1982 May 14;247(18):2543-6. (PMID: 7069920)
      J Chronic Dis. 1987;40(5):373-83. (PMID: 3558716)
      Biol Blood Marrow Transplant. 2015 Aug;21(8):1479-87. (PMID: 25862591)
      Stem Cells Cloning. 2010 Aug 26;3:105-17. (PMID: 24198516)
      Stat Methods Med Res. 2020 Jan;29(1):57-77. (PMID: 30612519)
      Nat Med. 2005 Oct;11(10):1026-8. (PMID: 16211027)
      Comput Stat Data Anal. 2010 Sep 1;54(9):2172-2186. (PMID: 24363478)
      J Clin Oncol. 2017 Apr 10;35(11):1154-1161. (PMID: 28380315)
      Biostatistics. 2020 Jan 1;21(1):50-68. (PMID: 30052809)
      JCO Clin Cancer Inform. 2021 May;5:494-507. (PMID: 33950708)
      Stat Med. 2016 Jul 20;35(16):2741-53. (PMID: 26854022)
    • Grant Information:
      U24 CA076518 United States CA NCI NIH HHS; United States HL NHLBI NIH HHS; United States CA NCI NIH HHS; United States HL NHLBI NIH HHS
    • Contributed Indexing:
      Keywords: BART; LIO prior hierarchy; Thompson sampling variable selection; accelerated failure time; constrained DPM; hematopoietic stem cell transplant; nonproportional hazards; survival analysis
    • الموضوع:
      Date Created: 20230318 Date Completed: 20231221 Latest Revision: 20241202
    • الموضوع:
      20241204
    • الرقم المعرف:
      PMC10505620
    • الرقم المعرف:
      10.1111/biom.13857
    • الرقم المعرف:
      36932826